Masamoto Tafu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6861283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphology control of brushite prepared by aqueous solution synthesis. Journal of Asian Ceramic Societies, 2014, 2, 52-56.	2.3	67
2	Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New Journal of Chemistry, 2015, 39, 2444-2450.	2.8	48
3	Grafted Polymethylhydrosiloxane on Hierarchically Porous Silica Monoliths: A New Path to Monolith-Supported Palladium Nanoparticles for Continuous Flow Catalysis Applications. ACS Applied Materials & Interfaces, 2017, 9, 406-412.	8.0	46
4	Phase Separation in Sol–Gel Process of Alkoxideâ€Derived Silicaâ€Zirconia in the Presence of Polyethylene Oxide. Journal of the American Ceramic Society, 2001, 84, 1968-1976.	3.8	38
5	Reaction between calcium phosphate and fluoride in phosphogypsum. Journal of the European Ceramic Society, 2006, 26, 767-770.	5.7	30
6	The Extremely High Adsorption Capacity of Fluoride by Chicken Bone Char (CBC) in Defluoridation of Drinking Water in Relation to Its Finer Particle Size for Better Human Health. Healthcare (Switzerland), 2018, 6, 123.	2.0	18
7	The evaluation of forest fire severity and effect on soil organic matter based on the L*, a*, b* color reading system. Analytical Methods, 2013, 5, 2660.	2.7	14
8	Reaction of Calcium Hydrogenphosphate Dihydrate (DCPD) with a Solution Containing a Small Amount of Fluoride. Journal of the Ceramic Society of Japan, 2005, 113, 363-367.	1.3	13
9	Study on subway particle capture by ferromagnetic mesh filter in nonuniform magnetic field. Separation and Purification Technology, 2015, 156, 642-654.	7.9	13
10	Amine/Hydrido Bifunctional Nanoporous Silica with Small Metal Nanoparticles Made Onsite: Efficient Dehydrogenation Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 36-41.	8.0	13
11	Repeated Heat Regeneration of Bone Char for Sustainable Use in Fluoride Removal from Drinking Water. Healthcare (Switzerland), 2018, 6, 143.	2.0	10
12	Stabilization of Fluoride in Waste Gypsum by Using Surface-Modified Calcium Phosphate Particle. Transactions of the Materials Research Society of Japan, 2010, 35, 377-380.	0.2	8
13	Effect of Anions on Morphology Control of Brushite Particles. Key Engineering Materials, 0, 529-530, 55-60.	0.4	8
14	Simple Colorimetric Analysis for Determining Hexavalent Chromium with High Sensitivity via Homogeneous Liquid-Liquid Extraction. Bulletin of the Chemical Society of Japan, 2019, 92, 807-810.	3.2	7
15	Properties of sludge generated by the treatment of fluoride-containing wastewater with dicalcium phosphate dihydrate. Euro-Mediterranean Journal for Environmental Integration, 2016, 1, 1.	1.3	6
16	Changes in fluoride removal ability of chicken bone char with changes in calcination time. International Journal of Ceramic Engineering & Science, 2020, 2, 83-91.	1.2	6
17	Effective removal of fluoride and phosphate pollution using mixtures of dicalcium phosphate dihydrate (DCPD) and Tunisian reservoir sediment containing calcium carbonate. Euro-Mediterranean Journal for Environmental Integration, 2020, 5, 1.	1.3	5
18	Simple and high-sensitivity colorimetric analysis of cadmium using homogeneous liquid–liquid extraction. Analytical Sciences, 2022, 38, 223-226.	1.6	5

ΜΑΣΑΜΟΤΟ ΤΑΓ

#	Article	IF	CITATIONS
19	Development of Original Attachment and Application Software for Simple Fluoride Analysis Using Smart Device. Modern Environmental Science and Engineering, 2016, 2, 289-293.	0.3	4
20	Enhanced reactivity of dicalcium phosphate dihydrate with fluoride ions by coating with apatite nanoparticles. Journal of Asian Ceramic Societies, 2021, 9, 498-506.	2.3	3
21	Minimum-Emission-Oriented Method for Calcium Fluoride for High-Quality Treatment of Wastewater Containing Fluoride Ion Journal of Japan Society on Water Environment, 2003, 26, 33-38.	0.4	3
22	Improving the properties of dicalcium phosphate dihydrate (DCPD) powder by changing the morphology. Journal of the Ceramic Society of Japan, 2018, 126, 202-207.	1.1	2
23	Simplified Determination of Trace Amounts of Fluoride in Groundwater by Transform Reaction of Calcium Hydrogenphosphate Dihydrate (DCPD). Journal of Japan Society on Water Environment, 2005, 28, 179-184.	0.4	1
24	Morphology Changing at Incipient Crystallization Condition. Journal of Physics: Conference Series, 2015, 596, 012009.	0.4	1
25	Development of High Sensitive Smart Device Analysis with Homogeneous Liquid-Liquid Extraction. Bunseki Kagaku, 2019, 68, 411-415.	0.2	1
26	Improved On-Site Characterization of Arsenic in Gypsum from Waste Plasterboards Using Smart Devices. Materials, 2022, 15, 2446.	2.9	1
27	Chemical prosperity of various chemical gypsums from viewpoint of particle morphology. Journal of Physics: Conference Series, 2015, 596, 012011.	0.4	0
28	Nanoapatite formation on DCPD. , 2021, , 159-173.		0
29	Leaching behaviour of impurities in waste gypsum board. WIT Transactions on Ecology and the Environment, 2007, , .	0.0	0
30	Enhanced reactivity of apatite composite derived by phosphate treatment of gypsum with fluoride ions. Journal of the Ceramic Society of Japan, 2022, 130, 113-117.	1.1	0
31	Development of Automated On-site Analysis Method Using a Smart Device as Detection System for Autocatalytic Reactions. Bunseki Kagaku, 2022, 71, 217-220.	0.2	0