Tingshuai Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6861171/publications.pdf

Version: 2024-02-01

23544 45285 9,207 143 58 90 citations h-index g-index papers 143 143 143 5849 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Boosted Electrocatalytic N ₂ Reduction to NH ₃ by Defectâ€Rich MoS ₂ Nanoflower. Advanced Energy Materials, 2018, 8, 1801357.	10.2	482
2	Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry A, 2020, 8, 19729-19745.	5.2	295
3	High-Performance Electrohydrogenation of N ₂ to NH ₃ Catalyzed by Multishelled Hollow Cr ₂ O ₃ Microspheres under Ambient Conditions. ACS Catalysis, 2018, 8, 8540-8544.	5 . 5	280
4	Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chemical Communications, 2020, 56, 14553-14569.	2.2	235
5	Honeycomb Carbon Nanofibers: A Superhydrophilic O ₂ â€Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Twoâ€Electron Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 10583-10587.	7.2	219
6	Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. Small, 2019, 15, e1805103.	5.2	206
7	Highâ€Performance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie - International Edition, 2021, 60, 25263-25268.	7.2	180
8	Ambient Ammonia Synthesis via Electrochemical Reduction of Nitrate Enabled by NiCo ₂ O ₄ Nanowire Array. Small, 2022, 18, e2106961.	5.2	171
9	Recent advances in electrospun nanofibers for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 16747-16789.	5. 2	166
10	TiO ₂ nanoparticles–reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2018, 6, 17303-17306.	5.2	165
11	Sâ€Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N ₂ Fixation to NH ₃ . Small Methods, 2019, 3, 1800251.	4.6	165
12	Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000048.	6.9	157
13	Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12201-12225.	5. 2	149
14	Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Current Opinion in Electrochemistry, 2021, 29, 100766.	2.5	147
15	A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3007-3011.	3.0	143
16	Ambient NH ₃ synthesis <i>via</i> electrochemical reduction of N ₂ over cubic sub-micron SnO ₂ particles. Chemical Communications, 2018, 54, 12966-12969.	2.2	138
17	Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Research, 2021, 14, 555-569.	5.8	137
18	Metal-based electrocatalytic conversion of CO ₂ to formic acid/formate. Journal of Materials Chemistry A, 2020, 8, 21947-21960.	5.2	125

#	Article	IF	CITATIONS
19	Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review. Electrochemistry Communications, 2021, 123, 106912.	2.3	125
20	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for Highâ€Efficiency Electrocatalytic NO Reduction to NH ₃ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	121
21	Emerging alkali metal ion (Li ⁺ , Na ⁺ , K ⁺ and Rb ⁺) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials Chemistry A, 2019, 7, 24150-24163.	5 . 2	116
22	Boosting electrocatalytic N ₂ reduction by MnO ₂ with oxygen vacancies. Chemical Communications, 2019, 55, 4627-4630.	2.2	113
23	Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. Journal of Materials Chemistry A, 2021, 9, 6402-6412.	5.2	110
24	CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media. Chinese Chemical Letters, 2022, 33, 890-892.	4.8	110
25	In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Research, 2022, 15, 3050-3055.	5.8	108
26	Defect-rich fluorographene nanosheets for artificial N ₂ fixation under ambient conditions. Chemical Communications, 2019, 55, 4266-4269.	2.2	105
27	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A, 2021, 9, 11879-11907.	5.2	102
28	Highâ€Performance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie, 2021, 133, 25467-25472.	1.6	102
29	Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS ₂ nanosheets. Journal of Materials Chemistry A, 2021, 9, 6117-6122.	5.2	102
30	Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. International Journal of Hydrogen Energy, 2022, 47, 3580-3586.	3.8	101
31	Ambient electrochemical N ₂ -to-NH ₃ conversion catalyzed by TiO ₂ decorated juncus effusus-derived carbon microtubes. Inorganic Chemistry Frontiers, 2022, 9, 1514-1519.	3.0	100
32	Bilateral Interfaces in In ₂ Se ₃ -Coln ₂ -CoSe ₂ Heterostructures for High-Rate Reversible Sodium Storage. ACS Nano, 2021, 15, 13307-13318.	7.3	99
33	Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Research, 2022, 15, 972-977.	5.8	98
34	SeC Bonding Promoting Fast and Durable Na ⁺ Storage in Yolk–Shell SnSe ₂ @SeC. Small, 2020, 16, e2002486.	5.2	97
35	Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 2021, 23, 2834-2867.	4.6	96
36	Electrocatalytic N ₂ -to-NH ₃ conversion with high faradaic efficiency enabled using a Bi nanosheet array. Chemical Communications, 2019, 55, 5263-5266.	2.2	95

#	Article	IF	Citations
37	NiFe Layered-Double-Hydroxide Nanosheet Arrays on Graphite Felt: A 3D Electrocatalyst for Highly Efficient Water Oxidation in Alkaline Media. Inorganic Chemistry, 2021, 60, 12703-12708.	1.9	95
38	Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Research, 2019, 12, 1093-1098.	5.8	93
39	Recent Progress in Electrocatalytic Methanation of CO ₂ at Ambient Conditions. Advanced Functional Materials, 2021, 31, 2009449.	7.8	92
40	N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Research, 2022, 15, 304-309.	5.8	90
41	Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 2020, 398, 125594.	6.6	85
42	Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N ₂ -to-NH ₃ fixation by a CoP nanoarray. Journal of Materials Chemistry A, 2021, 9, 13861-13866.	5.2	83
43	Conductive Two-Dimensional Magnesium Metal–Organic Frameworks for High-Efficiency O ₂ Electroreduction to H ₂ O ₂ . ACS Catalysis, 2022, 12, 6092-6099.	5.5	78
44	Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications, 2021, 122, 106881.	2.3	75
45	Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Research, 2022, 15, 1039-1046.	5.8	74
46	High-efficiency electrochemical nitrite reduction to ammonium using a Cu ₃ P nanowire array under ambient conditions. Green Chemistry, 2021, 23, 5487-5493.	4.6	73
47	A magnetron sputtered Mo ₃ Si thin film: an efficient electrocatalyst for N ₂ reduction under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 884-888.	5.2	72
48	High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chemical Engineering Journal, 2022, 435, 135104.	6.6	71
49	A Biomassâ€Derived Carbonâ€Based Electrocatalyst for Efficient N ₂ Fixation to NH ₃ under Ambient Conditions. Chemistry - A European Journal, 2019, 25, 1914-1917.	1.7	68
50	High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni ₂ P nanoarray under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 24268-24275.	5.2	68
51	Plasma-induced defective TiO2-x with oxygen vacancies: A high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem Catalysis, 2021, 1, 1437-1448.	2.9	68
52	Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction. Materials Today Physics, 2020, 15, 100280.	2.9	67
53	Enhanced Electrochemical H ₂ O ₂ Production via Two-Electron Oxygen Reduction Enabled by Surface-Derived Amorphous Oxygen-Deficient TiO _{2–<i>x</i>} . ACS Applied Materials & Interfaces, 2021, 13, 33182-33187.	4.0	67
54	Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. Journal of Colloid and Interface Science, 2022, 615, 636-642.	5.0	67

#	Article	IF	CITATIONS
55	Recent Advances in Nonprecious Metal Oxide Electrocatalysts and Photocatalysts for N ₂ Reduction Reaction under Ambient Condition. Small Science, 2021, 1, 2000069.	5.8	63
56	Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Research, 2021, 14, 2831-2836.	5.8	62
57	Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. Journal of Colloid and Interface Science, 2022, 606, 1055-1063.	5.0	62
58	Electrocatalytic N ₂ Fixation over Hollow VO ₂ Microspheres at Ambient Conditions. ChemElectroChem, 2019, 6, 1014-1018.	1.7	59
59	Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions. Chinese Journal of Catalysis, 2021, 42, 1024-1029.	6.9	59
60	High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt–phosphorus alloy film. Chemical Communications, 2021, 57, 9720-9723.	2.2	58
61	High-Performance Electrochemical Nitrate Reduction to Ammonia under Ambient Conditions Using a FeOOH Nanorod Catalyst. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17312-17318.	4.0	58
62	Functional integration of hierarchical coreâ€"shell architectures <i>via</i> vertically arrayed ultrathin CuSe nanosheets decorated on hollow CuS microcages targeting highly effective sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 27615-27628.	5.2	56
63	TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Materials Today Physics, 2021, 18, 100396.	2.9	55
64	Electrochemical two-electron O ₂ reduction reaction toward H ₂ O ₂ production: using cobalt porphyrin decorated carbon nanotubes as a nanohybrid catalyst. Journal of Materials Chemistry A, 2021, 9, 26019-26027.	5.2	55
65	CuS concave polyhedral superstructures enabled efficient N ₂ electroreduction to NH ₃ at ambient conditions. Inorganic Chemistry Frontiers, 2021, 8, 3105-3110.	3.0	54
66	MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100586.	2.9	54
67	Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. Coordination Chemistry Reviews, 2020, 420, 213408.	9.5	51
68	High-performance NH ₃ production <i>via</i> NO electroreduction over a NiO nanosheet array. Chemical Communications, 2021, 57, 13562-13565.	2.2	51
69	Solid oxide fuel cell interconnect design optimization considering the thermal stresses. Science Bulletin, 2016, 61, 1333-1344.	4.3	50
70	Off-Stoichiometric Methylammonium Iodide Passivated Large-Grain Perovskite Film in Ambient Air for Efficient Inverted Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39882-39889.	4.0	50
71	An amorphous WC thin film enabled high-efficiency N ₂ reduction electrocatalysis under ambient conditions. Chemical Communications, 2021, 57, 7806-7809.	2.2	50
72	Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. Journal of Materials Chemistry C, 2019, 7, 10724-10742.	2.7	49

#	Article	IF	CITATIONS
73	Electrospun TiC/C nanofibers for ambient electrocatalytic N ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 19657-19661.	5.2	48
74	Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. Journal of Materials Chemistry A, 2022, 10, 2842-2848.	5.2	47
75	Greatly Facilitated Two-Electron Electroreduction of Oxygen into Hydrogen Peroxide over TiO ₂ by Mn Doping. ACS Applied Materials & Interfaces, 2021, 13, 46659-46664.	4.0	46
76	Vacancy defect modulation in hot-casted NiO film for efficient inverted planar perovskite solar cells. Journal of Energy Chemistry, 2020, 48, 426-434.	7.1	44
77	Electrospun zirconia nanofibers for enhancing the electrochemical synthesis of ammonia by artificial nitrogen fixation. Journal of Materials Chemistry A, 2021, 9, 2145-2151.	5.2	44
78	Cr ₃ C ₂ Nanoparticle-Embedded Carbon Nanofiber for Artificial Synthesis of NH ₃ through N ₂ Fixation under Ambient Conditions. ACS Applied Materials & amp; Interfaces, 2019, 11, 35764-35769.	4.0	43
79	Practical strategies for enhanced performance of anode materials in Na ⁺ /K ⁺ -ion batteries. Journal of Materials Chemistry A, 2021, 9, 7317-7335.	5.2	41
80	Bioinspired Electrocatalyst for Electrochemical Reduction of N ₂ to NH ₃ in Ambient Conditions. ACS Applied Materials & Interfaces, 2020, 12, 2445-2451.	4.0	39
81	Coâ€MOF Nanosheet Arrays for Efficient Alkaline Oxygen Evolution Electrocatalysis. ChemNanoMat, 2021, 7, 906-909.	1.5	39
82	Electrochemical synthesis of ammonia by zirconia-based catalysts at ambient conditions. Applied Catalysis A: General, 2019, 581, 116-122.	2.2	38
83	Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Research, 2022, 15, 3880-3885.	5 . 8	38
84	DyF ₃ : An Efficient Electrocatalyst for N ₂ Fixation to NH ₃ under Ambient Conditions. Chemistry - an Asian Journal, 2020, 15, 487-489.	1.7	36
85	Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100611.	2.9	36
86	La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions. Chinese Journal of Catalysis, 2021, 42, 1755-1762.	6.9	35
87	Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18626-18633.	5 . 2	33
88	Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Research, 2022, 15, 5032-5037.	5 . 8	32
89	Thermal stress analysis of a planar anode-supported solid oxide fuel cell: Effects of anode porosity. International Journal of Hydrogen Energy, 2017, 42, 20239-20248.	3 . 8	30
90	Recent advances in MoS ₂ -based materials for electrocatalysis. Chemical Communications, 2022, 58, 2259-2278.	2.2	30

#	Article	IF	CITATIONS
91	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H ₂ O ₂ electrosynthesis in acidic media. Journal of Materials Chemistry A, 2021, 9, 21703-21707.	5.2	29
92	Recent Progress in Metal-Free Electrocatalysts toward Ambient N2 Reduction Reaction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	29
93	Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells. Journal of Power Sources, 2018, 381, 26-29.	4.0	28
94	CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate reduction to ammonia. Chemical Communications, 2022, 58, 5901-5904.	2.2	28
95	Thermal stress analysis of sulfur deactivated solid oxide fuel cells. Journal of Power Sources, 2018, 379, 134-143.	4.0	27
96	Honeycomb Carbon Nanofibers: A Superhydrophilic O ₂ â€Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Twoâ€Electron Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 10677-10681.	1.6	26
97	Enhancing Electrocatalytic NO Reduction to NH ₃ by the CoS Nanosheet with Sulfur Vacancies. Inorganic Chemistry, 2022, 61, 8096-8102.	1.9	26
98	Dynamic modelling and controlling strategy of polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2020, 45, 29718-29729.	3.8	25
99	Enhanced electrocatalytic N ₂ -to-NH ₃ fixation by ZrS ₂ nanofibers with a sulfur vacancy. Chemical Communications, 2020, 56, 14031-14034.	2.2	25
100	Magnetron sputtering enabled synthesis of nanostructured materials for electrochemical energy storage. Journal of Materials Chemistry A, 2020, 8, 20260-20285.	5.2	25
101	Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochimica Acta, 2020, 338, 135697.	2.6	25
102	2D Vanadium Carbide (MXene) for Electrochemical Synthesis of Ammonia Under Ambient Conditions. Catalysis Letters, 2021, 151, 3516-3522.	1.4	23
103	Electrochemical Synthesis of Ammonia Based on a Perovskite LaCrO 3 Catalyst. ChemCatChem, 2020, 12, 731-735.	1.8	22
104	Iron-Doped MoO ₃ Nanosheets for Boosting Nitrogen Fixation to Ammonia at Ambient Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7142-7151.	4.0	21
105	A 3D FeOOH nanotube array: an efficient catalyst for ammonia electrosynthesis by nitrite reduction. Chemical Communications, 2022, 58, 5160-5163.	2.2	20
106	Random laser action from a natural flexible biomembrane-based device. Journal of Modern Optics, 0, , 1-6.	0.6	16
107	A Detailed Analysis of Internal Resistance of a PEFC Comparing High and Low Humidification of the Reactant Gases. Frontiers in Energy Research, 2020, 8, .	1.2	16
108	Numerical simulation of solid oxide fuel cells comparing different electrochemical kinetics. International Journal of Energy Research, 2021, 45, 12980-12995.	2.2	16

#	Article	IF	Citations
109	Parametric study for electrode microstructure influence on SOFC performance. International Journal of Hydrogen Energy, 2021, 46, 37440-37459.	3.8	16
110	Zinc doped Fe2O3 for boosting Electrocatalytic Nitrogen Fixation to ammonia under mild conditions. International Journal of Hydrogen Energy, 2021, 46, 14331-14337.	3.8	14
111	Facile electrochemical fabrication of magnetic Fe3O4 for electrocatalytic synthesis of ammonia used for hydrogen storage application. International Journal of Hydrogen Energy, 2021, 46, 24128-24134.	3.8	14
112	The Mechanism of H[sub 2]S Poisoning Ni/YSZ Electrode Studied by Impedance Spectroscopy. Electrochemical and Solid-State Letters, 2011, 14, B35.	2.2	13
113	Monodisperse Cu Cluster-Loaded Defective ZrO ₂ Nanofibers for Ambient N ₂ Fixation to NH ₃ . ACS Applied Materials & Interfaces, 2021, 13, 40724-40730.	4.0	13
114	Analysis of electromagnetic pulses generation from laser coupling with polymer targets: Effect of metal content in target. Matter and Radiation at Extremes, 2020, 5, .	1.5	12
115	Thermal stress analysis at the interface of cathode and electrolyte in solid oxide fuel cells. International Communications in Heat and Mass Transfer, 2020, 118, 104831.	2.9	11
116	Fe(III) grafted MoO3 nanorods for effective electrocatalytic fixation of atmospheric N2 to NH3. International Journal of Hydrogen Energy, 2022, 47, 3550-3555.	3.8	11
117	Highly Efficient Na+ Storage in Uniform Thorn Ball-Like α-MnSe/C Nanospheres. Acta Metallurgica Sinica (English Letters), 2021, 34, 373-382.	1.5	10
118	Effect of the Electrochemical Active Site on Thermal Stress in Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2018, 165, F105-F113.	1.3	9
119	Electromagnetic radiations from laser interaction with gas-filled Hohlraum. Laser Physics Letters, 2018, 15, 016101.	0.6	9
120	Diffusion parameter correlations for PEFC gas diffusion layers considering the presence of a water-droplet. International Journal of Hydrogen Energy, 2020, 45, 29824-29831.	3.8	9
121	Enhancing electromagnetic radiations by a pre-ablation laser during laser interaction with solid target. Physics of Plasmas, 2020, 27, .	0.7	9
122	Enhanced electrocatalytic performance of TiO ₂ nanoparticles by Pd doping toward ammonia synthesis under ambient conditions. Chemical Communications, 2022, 58, 3214-3217.	2.2	9
123	Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility. Photonic Sensors, 2016, 6, 249-255.	2.5	8
124	Random laser action from ceramic-doped polymer films. Journal of Modern Optics, 2017, 64, 1289-1297.	0.6	8
125	Temperature control strategy for polymer electrolyte fuel cells. International Journal of Energy Research, 2020, 44, 4352-4365.	2.2	8
126	Thermal Stress Analysis of Solid Oxide Fuel Cells with Chromium Poisoning Cathodes. Journal of the Electrochemical Society, 2018, 165, F1224-F1231.	1.3	7

#	Article	IF	CITATIONS
127	Analysis of Thermal Stress in a Solid Oxide Fuel Cell Due to the Sulfur Poisoning Interface of the Electrolyte and Cathode. Energy & Samp; Fuels, 2021, 35, 2674-2682.	2.5	6
128	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for Highâ€Efficiency Electrocatalytic NO Reduction to NH ₃ . Angewandte Chemie, 0, , .	1.6	6
129	Effective electromagnetic shielding with multi-layer structure material on Shenguang laser facility. Plasma Science and Technology, 2020, 22, 025601.	0.7	5
130	Spatial and temporal evolution of electromagnetic pulses generated at Shenguang-II series laser facilities. Plasma Science and Technology, 2021, 23, 115202.	0.7	5
131	YF ₃ : a nanoflower-like catalyst for efficient nitrogen fixation to ammonia under ambient conditions. Catalysis Science and Technology, 2021, 11, 6750-6754.	2.1	4
132	Electrocatalytic H ₂ O ₂ production <i>via</i> two-electron O ₂ reduction by Mo-doped TiO ₂ nanocrystallines. Catalysis Science and Technology, 2021, 11, 6970-6974.	2.1	4
133	Generation and regulation of electromagnetic pulses induced by hybrid laser pulses interacting with solid targets. Nuclear Fusion, 2022, 62, 066006.	1.6	4
134	Ag@TiO 2 as an Efficient Electrocatalyst for N 2 Fixation to NH 3 under Ambient Conditions. ChemistrySelect, 2021, 6, 5271-5274.	0.7	3
135	Electrodeposition of Amorphous Feâ^'P Shell on Co(OH)F Nanowire Arrays for Boosting Oxygen Evolution Electrocatalysis in Alkaline Media. ChemNanoMat, 2022, 8, .	1.5	3
136	ZrO ₂ /C Nanosphere Enables Highâ€Efficiency Nitrogen Reduction to Ammonia at Ambient Conditions. ChemCatChem, 2022, 14, .	1.8	3
137	Modeling Validation and Simulation of an Anode Supported SOFC Including Mass and Heat Transport, Fluid Flow and Chemical Reactions. , 2011 , , .		2
138	Intense Electromagnetic Pulses Generated From kJ-Laser Interacting With Hohlraum Targets. IEEE Transactions on Nuclear Science, 2022, 69, 2027-2036.	1.2	2
139	Characterization of a quasi-sinusoidal transmission grating without membrane substrate in the 200–1500 eV photon energy regions. Journal of Modern Optics, 2016, 63, 261-268.	0.6	1
140	A-Asterisk Algorithm as an Alternative to Evaluate the Geometric Tortuosity in Digitally Created SOFC Anodes. ECS Transactions, 2021, 103, 1665-1671.	0.3	1
141	Simulation of a Flat-Tube Solid Oxide Fuel Cell with Symmetric Double-Sided Cathode Considering Different Fuel Compositions. ECS Meeting Abstracts, 2021, MA2021-03, 288-288.	0.0	0
142	A-Asterisk Algorithm as an Alternative to Evaluate the Geometric Tortuosity in Digitally Created SOFC Anodes. ECS Meeting Abstracts, 2021, MA2021-03, 113-113.	0.0	0
143	Simulation of a Double-Sided Cathode SOFC Comparing Different Electrochemical Reaction Kinetics. ECS Meeting Abstracts, 2020, MA2020-02, 2504-2504.	0.0	0