Suryakant K Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6860635/publications.pdf

Version: 2024-02-01

257450 330143 1,509 51 24 37 citations h-index g-index papers 54 54 54 1198 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TiO ₂ –Co ₃ O ₄ Core–Shell Nanorods: Bifunctional Role in Better Energy Storage and Electrochromism. ACS Applied Energy Materials, 2018, 1, 790-798.	5.1	97
2	Length-Dependent Electron Spin Polarization in Oligopeptides and DNA. Journal of Physical Chemistry C, 2020, 124, 10776-10782.	3.1	90
3	Mesoporous Nickel Oxide (NiO) Nanopetals for Ultrasensitive Glucose Sensing. Nanoscale Research Letters, 2018, 13, 16.	5 . 7	73
4	Spin-Dependent Electron Transport through Bacterial Cell Surface Multiheme Electron Conduits. Journal of the American Chemical Society, 2019, 141, 19198-19202.	13.7	67
5	The Electron Spin as a Chiral Reagent. Angewandte Chemie - International Edition, 2020, 59, 1653-1658.	13.8	65
6	Effect of Chiral Molecules on the Electron's Spin Wavefunction at Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 1550-1557.	4.6	65
7	Polythiophene -viologen bilayer for electro-trichromic device. Solar Energy Materials and Solar Cells, 2018, 188, 249-254.	6.2	64
8	Spin Filtering Along Chiral Polymers. Angewandte Chemie - International Edition, 2020, 59, 14671-14676.	13.8	64
9	Fast electrochromic display: tetrathiafulvalene–graphene nanoflake as facilitating materials. Journal of Materials Chemistry C, 2017, 5, 9504-9512.	5 . 5	55
10	Fano Scattering: Manifestation of Acoustic Phonons at the Nanoscale. Journal of Physical Chemistry Letters, 2016, 7, 5291-5296.	4.6	53
11	Long-Range Spin-Selective Transport in Chiral Metal–Organic Crystals with Temperature-Activated Magnetization. ACS Nano, 2020, 14, 16624-16633.	14.6	51
12	Quantifying the Short-Range Order in Amorphous Silicon by Raman Scattering. Analytical Chemistry, 2018, 90, 8123-8129.	6.5	47
13	Interfacial redox centers as origin of color switching in organic electrochromic device. Optical Materials, 2017, 66, 65-71.	3.6	45
14	Copper Pyrovanadate Nanoribbons as Efficient Multienzyme Mimicking Nanozyme for Biosensing Applications. ACS Applied Nano Materials, 2020, 3, 7917-7929.	5.0	43
15	Interplay between phonon confinement and Fano effect on Raman line shape for semiconductor nanostructures: Analytical study. Solid State Communications, 2016, 230, 25-29.	1.9	42
16	Asymmetric reactions induced by electron spin polarization. Physical Chemistry Chemical Physics, 2020, 22, 21570-21582.	2.8	40
17	Spectral Anomaly in Raman Scattering from p-Type Silicon Nanowires. Journal of Physical Chemistry C, 2017, 121, 5372-5378.	3.1	39
18	Organic Nanostructures on Inorganic Ones: An Efficient Electrochromic Display by Design. ACS Applied Nano Materials, 2018, 1, 3715-3723.	5.0	37

#	Article	IF	CITATIONS
19	Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes. Physical Chemistry Chemical Physics, 2017, 19, 31788-31795.	2.8	36
20	Low-Resistance Molecular Wires Propagate Spin-Polarized Currents. Journal of the American Chemical Society, 2019, 141, 14707-14711.	13.7	33
21	Effect of Oxidative Damage on Charge and Spin Transport in DNA. Journal of the American Chemical Society, 2019, 141, 123-126.	13.7	32
22	Zn2+ Induced Self-Assembled Growth of Octapodal CuxO–ZnO Microcrystals: Multifunctional Applications in Reductive Degradation of Organic Pollutants and Nonenzymatic Electrochemical Sensing of Glucose. ACS Sustainable Chemistry and Engineering, 2018, 6, 9771-9783.	6.7	29
23	Significant field emission enhancement in ultrathin nano-thorn covered NiO nano-petals. Journal of Materials Chemistry C, 2017, 5, 9611-9618.	5.5	28
24	Synthesis of Conducting Polypyrrole-Titanium Oxide Nanocomposite: Study of Structural, Optical and Electrical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 257-263.	3.7	26
25	Precursor concentration dependent hydrothermal NiO nanopetals: Tuning morphology for efficient applications. Superlattices and Microstructures, 2019, 125, 138-143.	3.1	26
26	Temperature Dependence of Charge and Spin Transfer in Azurin. Journal of Physical Chemistry C, 2021, 125, 9875-9883.	3.1	26
27	Role of metal nanoparticles on porosification of silicon by metal induced etching (MIE). Superlattices and Microstructures, 2016, 94, 101-107.	3.1	22
28	Ecofriendly gold nanoparticles $\hat{a}\in$ Lysozyme interaction: Thermodynamical perspectives. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 284-290.	3.8	22
29	Live spectroscopy to observe electrochromism in viologen based solid state device. Solid State Communications, 2017, 261, 17-20.	1.9	21
30	Enhancing Viologen's Electrochromism by Incorporating Thiophene: A Step Toward Allâ€Organic Flexible Device. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800680.	1.8	18
31	Improved field emission from appropriately packed TiO2 nanorods: Designing the miniaturization. Superlattices and Microstructures, 2019, 126, 1-7.	3.1	16
32	Graphene nanoflakes: Foundation for improving solid state electrochemistry based electrochromic devices. Solar Energy Materials and Solar Cells, 2019, 200, 110041.	6.2	15
33	Porous Silicon's fractal nature revisited. Superlattices and Microstructures, 2018, 120, 141-147.	3.1	14
34	Understanding perceived color through gradual spectroscopic variations in electrochromism. Indian Journal of Physics, 2019, 93, 927-933.	1.8	14
35	Magnetoelectrochemistry and Asymmetric Electrochemical Reactions. Magnetochemistry, 2020, 6, $1.$	2.4	10
36	Exchange Interactions Drive Supramolecular Chiral Induction in Polyaniline. Small Methods, 2020, 4, 2000617.	8.6	9

3

#	Article	IF	CITATIONS
37	Tent-Shaped Surface Morphologies of Silicon: Texturization by Metal Induced Etching. Silicon, 2018, 10, 2801-2807.	3.3	8
38	The Electron Spin as a Chiral Reagent. Angewandte Chemie, 2020, 132, 1670-1675.	2.0	8
39	Spin Filtering Along Chiral Polymers. Angewandte Chemie, 2020, 132, 14779-14784.	2.0	8
40	Improved analytical framework for quantifying field emission from nanostructures. Materials Chemistry and Physics, 2020, 245, 122686.	4.0	8
41	Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications. Journal of Molecular Structure, 2017, 1139, 447-454.	3.6	7
42	Polypyrrole–vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
43	Generalisation of phonon confinement model for interpretation of Raman line-shape from nano-silicon. Advances in Materials and Processing Technologies, 2018, 4, 227-233.	1.4	6
44	Combined effect of organic-inorganic heterostructure to enhance electrochemical capacitance. Materials Chemistry and Physics, 2019, 238, 121943.	4.0	6
45	Spectroscopic Evidence of Phosphorous Heterocycle–DNA Interaction and its Verification by Docking Approach. Journal of Fluorescence, 2018, 28, 373-380.	2.5	5
46	Asymmetric Magnetoelectrochemistry: An Efficient Method to Grow Enantiopure Self-Assemble Monolayer. Magnetochemistry, 2020, 6, 37.	2.4	3
47	Construction of well aligned highly dense Cobalt nanoneedles for efficient device application. Advances in Materials and Processing Technologies, 2017, 3, 627-631.	1.4	2
48	Spin control using chiral templated nickel. Applied Physics Letters, 2021, 118, .	3.3	2
49	An insight of spirooxindole-annulated thiopyran $\hat{a}\in$ DNA interaction: spectroscopic and docking approach of these biological materials. Advances in Materials and Processing Technologies, 2017, 3, 339-352.	1.4	1
50	Effect dietary choline supplementation on egg quality and serumbiochemical profile in White Pekin Ducks. Indian Journal of Animal Research, 2015, , .	0.1	1
51	On the Dynamics of the Carbon–Bromine Bond Dissociation in the 1-Bromo-2-Methylnaphthalene Radical Anion. Molecules, 2022, 27, 4539.	3.8	1