
Dmitry N Platonov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6860623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superphotoacidic properties and pH-switched Stokes shifts in electron-deficient 5-hydroxyisoquinolone derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113808.	3.9	3
2	Generation and cascade reactions of N-[1,2-bis(methoxycarbonyl)vinyl]pyridinium species. Mendeleev Communications, 2022, 32, 262-264.	1.6	1
3	A unique small molecule class of fluorophores with large Stokes shift based on the electron deficient 9-methoxypyrroloisoquinolinetrione core. Dyes and Pigments, 2022, 203, 110344.	3.7	6
4	Electron deficient 5-hydroxy-1,2-dihydroisoquinolin-1-ones – A new class of fluorescent dyes with large Stokes shifts. Dyes and Pigments, 2021, 187, 109107.	3.7	6
5	Electron deficient cyclopentadienolate in the synthesis of chromophores with mono- and poly-cyclic hydrazonocyclopentadiene acceptor moieties. Dyes and Pigments, 2021, 187, 109132.	3.7	4
6	lonic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph ₃ C ₃) ₂ Pt ₃ (MeCN) ₄] ²⁺ (BF <su Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reactions. Organometallics, 2021, 40, 3876-3885.</su 	ub>4 ₃ /sub 2.3	>> ^{–<!--</td-->}
7	Indacenodithienothiophene based chromophore with cyclopentadienylidenehydrazine acceptor moieties. Mendeleev Communications, 2020, 30, 647-649.	1.6	7
8	Push-pull molecules bearing a hydrazonocyclopentadiene acceptor moiety: from the synthesis to organic photovoltaic applications. Mendeleev Communications, 2019, 29, 304-306.	1.6	8
9	Synthesis of Diazanorcaradienes and 1,2â€Diazepines via the Tandem [4+2]â€Cycloaddition/Retroâ€[4+2]â€Cycloaddition Reaction between Methoxycarbonylcyclopropenes and Dimethoxycarbonyltetrazine. European Journal of Organic Chemistry, 2019, 2019, 4133-4138.	2.4	8
10	Synthesis of chromophores based on the hydrazinylidene cyclic acceptor moieties via the reaction of organolithium reagents with diazo compounds. Dyes and Pigments, 2019, 170, 107589.	3.7	6
11	Synthesis and TD-DFT investigation of arylhydrazonocyclopentadiene dyes. Dyes and Pigments, 2019, 161, 500-509.	3.7	12
12	A New Simple Procedure for the Synthesis of Heptamethyl Cyclohepta-1,3,5-triene-1,2,3,4,5,6,7-heptacarboxylate. Synlett, 2018, 29, 1157-1160.	1.8	8
13	Synthesis of 1,2,3,4,5â€Penta(methoxycarbonyl)cyclopentadienides through Electrocyclic Ring Closure and Ring Contraction Reactions. European Journal of Organic Chemistry, 2018, 2018, 5065-5068.	2.4	7
14	Estimating electron affinity from the lifetime of negative molecular ions: Cycloheptatriene derivatives. Russian Journal of Physical Chemistry A, 2017, 91, 915-920.	0.6	4
15	Synthesis and UV–vis spectra of a new type of dye via a decarboxylative azo coupling reaction. Tetrahedron Letters, 2016, 57, 4311-4313.	1.4	6
16	Synthesis of 1,2,3,4,5,6,7â€Heptasubstituted Cycloheptatrienes through Cycloaddition Reactions of Substituted Cyclopentadienones. European Journal of Organic Chemistry, 2016, 2016, 4105-4110.	2.4	4
17	Reactions of poly(methoxycarbonyl)-substituted cycloheptatrien-1-yl- and (N-mesylaminoethenyl)cyclopentadienyl anions with some aromatic cations. Tetrahedron, 2015, 71, 1403-1408.	1.9	6
18	Hepta(methoxycarbonyl)cycloheptatriene halo derivatives. Russian Chemical Bulletin, 2015, 64, 241-245.	1.5	1

DMITRY N PLATONOV

#	Article	IF	CITATIONS
19	The cyclopropyliminium rearrangement of 2-cyclopropyl-4-nitrobenzimidazoles. Russian Chemical Bulletin, 2014, 63, 765-769.	1.5	5
20	Electrooxidation of potassium hepta(methoxycarbonyl)cycloheptatrienide in acetonitrile. Mendeleev Communications, 2014, 24, 363-364.	1.6	1
21	Infrared-spectroscopic study of amino-substituted nitrilimines and their photochemical transformations in an argon matrix. Mendeleev Communications, 2014, 24, 197-200.	1.6	19
22	A novel and unusual reaction of 1,2,3,4,5,6,7-hepta(methoxycarbonyl)-cyclohepta-2,4,6-trien-1-yl potassium with organic azides. Tetrahedron Letters, 2014, 55, 2381-2384.	1.4	7
23	The Cyclopropyliminium Rearrangement of Cyclopropylthiazoles. Mendeleev Communications, 2013, 23, 22-23.	1.6	14
24	Synthesis of 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazoles via theÂcyclopropyliminium rearrangement of substituted 2-cyclopropylbenzimidazoles. Tetrahedron, 2013, 69, 3495-3505.	1.9	17
25	Reaction of 1,2,3,4,5,6,7-(heptamethoxycarbonyl)cyclohepta-2,4,6-trien-1-yl potassium with tropylium tetrafluoroborate to form cage structures. Tetrahedron, 2013, 69, 6855-6860.	1.9	9
26	Generation of 1-aryl-3-methoxycarbonylnitrilimines and their reaction with halogen-containing unsaturated compounds. Russian Chemical Bulletin, 2012, 61, 1138-1147.	1.5	1
27	Design of Multi-Component Reactions. Advances in Experimental Medicine and Biology, 2011, , 139-172.	1.6	Ο
28	Generation of 1-aryl-3-methoxycarbonylnitrilimines and their reactions with unsaturated hydrocarbons. Russian Chemical Bulletin, 2011, 60, 1677-1684.	1.5	2
29	Cascade reactions of diazocarbonyl compounds with pyridinium aroylmethylides accompanied by water or benzoic acid elimination in the cyclocondensation step. Russian Chemical Bulletin, 2011, 60, 345-351.	1.5	4
30	Synthesis of substituted 2-alkyl-5-hydroxy-1-oxo-1,2-dihydroisoquinolines and their new condensed structures. Mendeleev Communications, 2010, 20, 83-85.	1.6	10
31	Reactions of diazo esters with electron-deficient alkenes in the presence of Lewis acids. Russian Chemical Bulletin, 2010, 59, 984-990.	1.5	19
32	N-Substituted hepta(methoxycarbonyl)-3a,7a-dihydroindazoles as new sources for the generation of nitrile imines. Russian Chemical Bulletin, 2010, 59, 1387-1392.	1.5	4
33	Synthesis of condensed heterocycles via cyclopropylimine rearrangement of cyclopropylazoles. Tetrahedron Letters, 2010, 51, 5120-5123.	1.4	26
34	Synthesis of substituted nortrop-2-enes and 3-vinylpyridin-2-ones via reaction of 1,2,3,4,5,6,7-heptamethoxycarbonylcycloheptatriene with primary amines. Tetrahedron Letters, 2009, 50, 5605-5608.	1.4	11
35	Reduction of the double bonds in heptamethyl cycloheptatriene-1,2,3,4,5,6,7-heptacarboxylate. Russian Chemical Bulletin, 2009, 58, 2283-2287.	1.5	5
36	Synthesis and properties of stable 1,2,3,4,5,6,7-heptamethoxycarbonylcyclohepta-2,4,6-trien-1-yl potassium and its reactions with electrophilic reagents. Tetrahedron, 2008, 64, 10201-10206.	1.9	23

DMITRY N PLATONOV

#	Article	IF	CITATIONS
37	A new method for the synthesis of azaheterocycles based on cascade reactions of nitrogen- and phosphorus-containing ylides with methyl diazoacetate. Tetrahedron Letters, 2007, 48, 883-886.	1.4	21
38	Cascade reactions of nitrogen-and phosphorus-containing ylides with methyl diazoacetate and in situ generated diazocyclopropane. Russian Chemical Bulletin, 2006, 55, 112-117.	1.5	6
39	Title is missing!. Russian Chemical Bulletin, 2003, 52, 187-191.	1.5	2
40	Unusual formation of 7-vinylcycloheptatriene derivatives in the catalytic cyclopropanation of cyclooctatetraene with diazocarbonyl compounds in the presence of rhodium catalysts. Russian Chemical Bulletin, 1999, 48, 2178-2180.	1.5	3
41	Catalytic reaction of methyl diazoacetate with silylated enynes. Russian Chemical Bulletin, 1993, 42, 1191-1195.	1.5	2
42	Enantiomerically selective metal complex catalysis. 7. Asymmetric hydrosilylation of imines and oximes on the catalyst [Rh(COD)Cl]2/(S)-phephos. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 763-766.	0.0	0