List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6860612/publications.pdf Version: 2024-02-01

MENC-FELLUO

#	Article	IF	CITATIONS
1	Unraveling the promoting roles of sulfate groups on propane combustion over Pt-SO42â^'/ZrO2 catalysts. Journal of Catalysis, 2022, 407, 322-332.	6.2	18
2	The promotion effect of ï€-ï€ interactions in Pd NPs catalysed selective hydrogenation. Nature Communications, 2022, 13, 1770.	12.8	45
3	Catalytic oxidation of dichloromethane over CrFeO mixed oxides: Improved activity and stability by sulfuric acid treatment. Applied Catalysis A: General, 2022, 636, 118573.	4.3	5
4	Tailoring Co3O4 active species to promote propane combustion over Co3O4/ZSM-5 catalyst. Molecular Catalysis, 2022, 524, 112297.	2.0	3
5	High performance cobalt nanoparticle catalysts supported by carbon for ozone decomposition: the effects of the cobalt particle size and hydrophobic carbon support. New Journal of Chemistry, 2021, 45, 561-568.	2.8	32
6	Understanding the crucial roles of catalyst properties in ethyl acetate and toluene oxidation over Pt catalysts. New Journal of Chemistry, 2021, 45, 11352-11358.	2.8	15
7	Exploring an efficient manganese oxide catalyst for ozone decomposition and its deactivation induced by water vapor. New Journal of Chemistry, 2021, 45, 10402-10408.	2.8	3
8	Crystal-plane effects of anatase TiO2 on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Journal of Catalysis, 2021, 395, 10-22.	6.2	29
9	Highly active and water tolerant Pt/MFe2O4 (M = Co and Ni) catalysts for low temperature CO oxidation. Applied Catalysis A: General, 2021, 619, 118142.	4.3	5
10	Insights into Different Reaction Behaviors of Propane and CO Oxidation over Pt/CeO ₂ and Pt/Nb ₂ O ₅ : The Crucial Roles of Support Properties. Journal of Physical Chemistry C, 2021, 125, 19301-19310.	3.1	21
11	The roles of metal-promoter interface on liquid phase selective hydrogenation of crotonaldehyde over Ir-MoOx/BN catalysts. Applied Catalysis A: General, 2021, 623, 118269.	4.3	7
12	The effects of TiO2 crystal-plane-dependent Ir-TiO interactions on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Chinese Journal of Catalysis, 2021, 42, 1742-1754.	14.0	7
13	Different roles of MoO3 and Nb2O5 promotion in short-chain alkane combustion over Pt/ZrO2 catalysts. Chinese Journal of Catalysis, 2021, 42, 2287-2295.	14.0	24
14	Selective hydrogenation of crotonaldehyde over Ir/BN catalysts: kinetic investigation and Ir particle size effect. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 301-315.	1.7	3
15	The effects of MoO ₃ impregnation order on the catalytic activity for propane combustion over Pt/ZrO ₂ catalysts: the crucial roles of Pt–MoO ₃ interfacial sites density. New Journal of Chemistry, 2021, 45, 14695-14702.	2.8	11
16	The Roles of Precursor-Induced Metal–Support Interaction on the Selective Hydrogenation of Crotonaldehyde over Ir/TiO2 Catalysts. Catalysts, 2021, 11, 1216.	3.5	1
17	Novel insights into diethylamine catalytic combustion over CuO catalysts supported by SSZ-13: Undesirable product NOx as a crucial intermediate for N2 generation. Molecular Catalysis, 2021, 516, 111952.	2.0	2
18	CO oxidation over Pt/Cr1.3Fe0.7O3 catalysts: Enhanced activity on single Pt atom by H2O promotion. Journal of Catalysis, 2020, 382, 192-203.	6.2	41

#	Article	lF	CITATIONS
19	Co–Cr–O mixed oxides for low–temperature total oxidation of propane: Structural effects, kinetics, and spectroscopic investigation. Chinese Journal of Catalysis, 2020, 41, 442-453.	14.0	41
20	Total oxidation of propane over Pt-V/SiO2 catalysts: Remarkable enhancement of activity by vanadium promotion. Applied Catalysis A: General, 2020, 590, 117337.	4.3	26
21	Unravelling the efficient catalytic performance of ozone decomposition over nitrogen-doped manganese oxide catalysts under high humidity. New Journal of Chemistry, 2020, 44, 17993-17999.	2.8	10
22	Metal-Free Ceria Catalysis for Selective Hydrogenation of Crotonaldehyde. ACS Catalysis, 2020, 10, 14560-14566.	11.2	64
23	High-performance CrxFe2-xO3 mixed oxides for catalytic combustion of dichloromethane. Catalysis Communications, 2020, 146, 106126.	3.3	6
24	Selective Dehydrofluorination of 1,1,1,3,3â€Pentafluoropropane to Synthesize Tetrafluoropropylene and Trifluoropropyne over the ZnO/Cr ₂ O ₃ Catalysts. ChemistrySelect, 2020, 5, 13027-13032.	1.5	1
25	Insights into propane combustion over MoO3 promoted Pt/ZrO2 catalysts: The generation of Pt-MoO3 interface and its promotional role on catalytic activity. Journal of Catalysis, 2020, 391, 80-90.	6.2	58
26	Selective Oxidation of Diethylamine on CuO/ZSM-5 Catalysts: The Role of Cooperative Catalysis of CuO and Surface Acid Sites. Industrial & Engineering Chemistry Research, 2020, 59, 9432-9439.	3.7	18
27	Deep oxidation of propane over WO3 - promoted Pt/BN catalysts: The critical role of Pt - WO3 interface. Applied Catalysis B: Environmental, 2020, 272, 118858.	20.2	62
28	Effect of Fe promotion on the performance of V2O5/MgF2 catalysts for gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Applied Surface Science, 2019, 490, 365-371.	6.1	6
29	Resolving a Decade-Long Question of Oxygen Defects in Raman Spectra of Ceria-Based Catalysts at Atomic Level. Journal of Physical Chemistry C, 2019, 123, 18889-18894.	3.1	53
30	Dehydrofluorination of 1, 1, 1, 3, 3-pentafluoropropane over C-AlF3 composite catalysts: Improved catalyst stability by the presence of pre-deposited carbon. Applied Catalysis A: General, 2019, 576, 39-46.	4.3	25
31	Understanding the Role of NbO <i>_x</i> on Pt/Al ₂ O ₃ for Effective Catalytic Propane Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 21945-21952.	3.7	32
32	Kinetic study of selective hydrogenation of crotonaldehyde over Fe-promoted Ir/BN catalysts. Applied Surface Science, 2019, 463, 463-473.	6.1	20
33	Synergistic roles of Pt0 and Pt2+ species in propane combustion over high-performance Pt/AlF3 catalysts. Applied Surface Science, 2019, 475, 524-531.	6.1	40
34	Highly Active Pt/BN Catalysts for Propane Combustion: The Roles of Support and Reactant-Induced Evolution of Active Sites. ACS Catalysis, 2019, 9, 1472-1481.	11.2	123
35	CO oxidation over supported Pt/CrxFe2-xO3 catalysts and their good tolerance to CO2 and H2O. Applied Catalysis B: Environmental, 2019, 245, 314-324.	20.2	30
36	Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O. Applied Surface Science, 2018, 442, 613-621.	6.1	22

#	Article	IF	CITATIONS
37	Catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene over fluorinated NiO/Cr 2 O 3 catalysts. Applied Surface Science, 2018, 433, 904-913.	6.1	34
38	Dehydrochlorination of 1, 1, 2-trichloroethane over SiO2-supported alkali and transition metal catalysts: Tunable selectivity controlled by the acid - base properties of the catalysts. Applied Catalysis B: Environmental, 2018, 236, 368-376.	20.2	21
39	High performance V2O5/MgF2 catalysts for gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane: Support-induced evolution of new active sites. Journal of Catalysis, 2018, 364, 271-281.	6.2	17
40	Catalytic combustion of dichloromethane over supported CoCr 2 O 4 /TUD-1 catalysts: The effect of CoCr 2 O 4 particle size on the modification of surface properties and the catalytic performance. Applied Surface Science, 2017, 425, 1074-1081.	6.1	15
41	Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO ₂ Catalysts: Acidity and Deactivation. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1017-1026.	4.9	4
42	The effect of microstructural properties of CoCr 2 O 4 spinel oxides on catalytic combustion of dichloromethane. Applied Surface Science, 2016, 369, 58-66.	6.1	23
43	Selective Hydrogenation of Crotonaldehyde over Ir–FeO _{<i>x</i>} /SiO ₂ Catalysts: Enhancement of Reactivity and Stability by Ir–FeO _{<i>x</i>} Interaction. Journal of Physical Chemistry C, 2016, 120, 8663-8673.	3.1	32
44	Effect of structural properties of mesoporous Co3O4 catalysts on methane combustion. Chemical Research in Chinese Universities, 2016, 32, 808-811.	2.6	9
45	Morphological effects of ordered Cr2O3 nanorods and Cr2O3 nanoparticles on fluorination of 2-chloro-1,1,1-trifluoroethane. Journal of Materials Science, 2016, 51, 6488-6496.	3.7	17
46	Great improvement on the selective hydrogenation of crotonaldehyde over CrO _x - and FeO _x -promoted Ir/SiO ₂ catalysts. Catalysis Science and Technology, 2016, 6, 4294-4305.	4.1	20
47	Kinetic and activity study of CO oxidation over CuO–MnOx–CeO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 503-520.	1.7	17
48	Enhanced CO oxidation over potassium-promoted Pt/Al2O3 catalysts: Kinetic and infrared spectroscopic study. Chinese Journal of Catalysis, 2015, 36, 1976-1986.	14.0	13
49	Pd/AlF3 catalysts for catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Chemical Research in Chinese Universities, 2015, 31, 1003-1006.	2.6	15
50	CO and C3H8 total oxidation over Pd catalysts supported on commercial Ce-Zr solid solution: Effects of the calcination temperature and hydrothermal treatment. Chemical Research in Chinese Universities, 2015, 31, 288-293.	2.6	1
51	Highly efficient Mg(OH)Cl/SiO2 catalysts for selective dehydrochlorination of 1,1,2-trichloroethane. Applied Catalysis A: General, 2015, 508, 10-15.	4.3	6
52	Highly selective gas-phase synthesis of 1,1-dichloroethylene from 1,1,2-trichloroethane over supported amine catalysts. Chemical Research in Chinese Universities, 2015, 31, 787-791.	2.6	5
53	Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture. Journal of Materials Science, 2015, 50, 1221-1227.	3.7	19
54	Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation. Applied Catalysis B: Environmental, 2015, 165, 477-486.	20.2	89

#	Article	IF	CITATIONS
55	Amine-modified ordered mesoporous silica: The effect of pore size on CO2 capture performance. Applied Surface Science, 2015, 324, 286-292.	6.1	92
56	Oxygen vacancy promoted CO oxidation over Pt/CeO 2 catalysts: A reaction at Pt–CeO 2 interface. Applied Surface Science, 2014, 314, 725-734.	6.1	190
57	Preparation, characterization and photocatalytic activity of graphene doped SmVO4 photocatalyst. Materials Letters, 2014, 122, 17-20.	2.6	9
58	Enhanced activity for catalytic oxidation of 1,2-dichloroethane over Al-substituted LaMnO3 perovskite catalysts. Applied Surface Science, 2014, 307, 178-188.	6.1	43
59	Remarkable enhancement of dichloromethane oxidation over potassium-promoted Pt/Al2O3 catalysts. Journal of Catalysis, 2014, 311, 314-324.	6.2	76
60	Probing different effects of surface MOy and Mn+ species (M=Cu, Ni, Co, Fe) for xMOy/Ce0.9M0.1â^'xO2â^'Î catalysts in CO oxidation. Applied Catalysis B: Environmental, 2014, 144, 325-332.	20.2	37
61	Effects of yttrium-doping on the performance of Cr2O3 catalysts for vapor phase fluorination of 1,1,2,3-tetrachloropropene. Journal of Fluorine Chemistry, 2014, 166, 78-83.	1.7	19
62	CO and C3H8 total oxidation over Pd/La-Al2O3 catalysts: Effect of calcination temperature and hydrothermal treatment. Journal of Rare Earths, 2014, 32, 621-627.	4.8	11
63	Effect of reduction temperature on Ru–Ir/ZnO catalyst for selective hydrogenation of crotonaldehyde. Journal of Molecular Catalysis A, 2014, 392, 89-96.	4.8	40
64	The effect of post-processing conditions on aminosilane functionalizaiton of mesocellular silica foam for post-combustion CO2 capture. Fuel, 2014, 123, 66-72.	6.4	37
65	Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 523-532.	20.2	135
66	Promoting effect of Ir on the catalytic property of Ru/ZnO catalysts for selective hydrogenation of crotonaldehyde. Applied Surface Science, 2013, 280, 179-185.	6.1	19
67	Stable Ir/SiO2 catalyst for selective hydrogenation of crotonaldehyde. Applied Surface Science, 2013, 270, 388-394.	6.1	38
68	Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO ₂ Capture. Energy & Fuels, 2013, 27, 7673-7680.	5.1	36
69	Effects of M-promoter (M=Y, Co, La, Zn) on Cr2O3 catalysts for fluorination of perchloroethylene. Journal of Fluorine Chemistry, 2013, 156, 66-72.	1.7	12
70	Comparing the CO oxidation activity of free PdO and Pd2+ ions over PdO-CeO2/SiO2 catalysts. Journal of Molecular Catalysis A, 2013, 374-375, 53-58.	4.8	21
71	Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine. Journal of Materials Chemistry A, 2013, 1, 6208.	10.3	63
72	Hydrogen Adsorption and Oxidation on Pt Film: An in Situ Real-Time Attenuated Total Reflection Infrared (ATR-IR) Spectroscopic Study. Journal of Physical Chemistry C, 2013, 117, 12537-12543.	3.1	18

#	Article	IF	CITATIONS
73	Characterizations of Ru/ZnO catalysts with different Ru contents for selective hydrogenation of crotonaldehyde. Journal of Industrial and Engineering Chemistry, 2013, 19, 250-255.	5.8	26
74	Cr ₂ O ₃ Catalysts for Fluorination of 2-Chloro-3,3,3-trifluoropropene to 2,3,3,3-Tetrafluoropropene. Industrial & amp; Engineering Chemistry Research, 2013, 52, 3295-3299.	3.7	20
75	Tetraethylenepentamine-Modified Siliceous Mesocellular Foam (MCF) for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 4221-4228.	3.7	120
76	Hydrogen adsorption on high surface area Cr2 O3 materials. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1920-1924.	1.8	3
77	CO ₂ Adsorption and Desorption on MgO/Al ₂ O ₃ : An In Situ Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) Study. Applied Spectroscopy, 2012, 66, 122-127.	2.2	25
78	Effect of reduction temperature on selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Applied Catalysis A: General, 2012, 433-434, 236-242.	4.3	37
79	A comparative study on Pt/CeO2 and Pt/ZrO2 catalysts for crotonaldehyde hydrogenation. Journal of Molecular Catalysis A, 2012, 361-362, 52-57.	4.8	19
80	Catalytic oxidation of dichloromethane over Pt/CeO2–Al2O3 catalysts. Applied Catalysis B: Environmental, 2012, 127, 159-166.	20.2	77
81	Superoxide and Peroxide Species on CeO ₂ (111), and Their Oxidation Roles. Journal of Physical Chemistry C, 2012, 116, 15986-15991.	3.1	94
82	Characterizations of Ir/TiO2 catalysts with different Ir contents for selective hydrogenation of crotonaldehyde. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 419-434.	1.7	16
83	Effects of Ir content on selective hydrogenation of crotonaldehyde over Ir/ZrO2 catalysts. Catalysis Communications, 2012, 21, 5-8.	3.3	17
84	Identification of active sites for CO and CH4 oxidation over PdO/Ce1â^'xPdxO2â^´Î´ catalysts. Applied Catalysis B: Environmental, 2012, 119-120, 117-122.	20.2	103
85	CO oxidation over CuO/Ce1â^'xCuxO2â^'δ and Ce1â [~] 'xCuxO2â [~] δ catalysts: Synergetic effects and kinetic study. Journal of Catalysis, 2012, 289, 199-209.	6.2	192
86	A novel method for the synthesis of well-crystallized β-AlF3 with high surface area derived from γ-Al2O3. Journal of Materials Chemistry, 2011, 21, 8987.	6.7	23
87	Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO ₂ Catalysts. Journal of Physical Chemistry C, 2011, 115, 19789-19796.	3.1	115
88	Bifunctional Pd/Cr ₂ O ₃ –ZrO ₂ Catalyst for the Oxidation of Volatile Organic Compounds. Industrial & Engineering Chemistry Research, 2011, 50, 10878-10882.	3.7	44
89	Characterization of CrOx/Al2O3 catalysts for dichloromethane oxidation. Catalysis Today, 2011, 175, 598-602.	4.4	62
90	Catalytic combustion of toluene on Pd/Ce x La1â^'x O2/monolith catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 419-429.	1.7	6

#	Article	IF	CITATIONS
91	<i>In situ</i> Raman spectroscopy studies on chromium oxide catalyst in an anhydrous hydrogen fluoride atmosphere. Journal of Raman Spectroscopy, 2011, 42, 1095-1099.	2.5	6
92	Fluorination of dichlorodifluoromethane to synthesize tetrafluoromethane over Cr2O3–AlF3 catalyst. Journal of Industrial and Engineering Chemistry, 2011, 17, 615-620.	5.8	15
93	Nano-sized CeO2 with extra-high surface area and its activity for CO oxidation. Materials Letters, 2010, 64, 1638-1640.	2.6	50
94	Effect of Optical Absorbance on the Raman Spectra of Ce _{0.9} Tb _{0.1} O _{2â^²<i>Î</i>} Solid Solution. ChemPhysChem, 2010, 11, 1693-1699.	2.1	13
95	Effects of NaCl on Pt/ZrO2 catalysts for selective hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2010, 388, 134-140.	4.3	19
96	Effect of Calcination Temperature on La-Modified Al2O3 Catalysts for Vapor Phase Hydrofluorination of Acetylene to Vinyl Fluoride. Chinese Journal of Chemical Physics, 2010, 23, 89-94.	1.3	4
97	Thermal Stable Pd/Ce0.2Y0.8O2-δ Catalysts for CO and CH4 Oxidation. Catalysis Letters, 2009, 128, 379-384.	2.6	9
98	Deep desulfurization of FCC gasoline by selective adsorption over nanosized zeolite-based adsorbents. Reaction Kinetics and Catalysis Letters, 2009, 97, 1-6.	0.6	3
99	Enhanced Activity for CO Oxidation over Pr- and Cu-Doped CeO ₂ Catalysts: Effect of Oxygen Vacancies. Journal of Physical Chemistry C, 2008, 112, 15045-15051.	3.1	183
100	Raman Spectrum of Er-Y-codoped ZrO2 and Fluorescence Properties of Er3+. Chinese Journal of Chemical Physics, 2007, 20, 90-94.	1.3	4
101	Comparative Study of CuO Species on CuO/Al2O3, CuO/CeO2-Al2O3 and CuO/La2O-Al2O3 Catalysts for CO Oxidation. Chinese Journal of Chemical Physics, 2007, 20, 582-586.	1.3	21
102	Study of Oxygen Vacancies in Ce _{0.9} Pr _{0.1} O ₂ ₋ _δ Solid Solution by in Situ X-ray Diffraction and in Situ Raman Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 18695-18702.	3.1	200
103	Identification of CuO Species in High Surface Area CuOâ^'CeO ₂ Catalysts and Their Catalytic Activities for CO Oxidation. Journal of Physical Chemistry C, 2007, 111, 12686-12692.	3.1	169
104	Preparation and Catalytic Performance of Pd Monolithic Catalysts Supported by Y2O3 Washcoat. Chinese Journal of Catalysis, 2007, 28, 635-640.	14.0	5
105	An improved method for preparation of Ce0.8Pr0.2OY solid solutions with nanoparticles smaller than 10 nm. Journal of Nanoparticle Research, 2007, 9, 471-478.	1.9	22
106	Raman Spectroscopic Study on the Structure in the Surface and the Bulk Shell of CexPr1-xO2-δMixed Oxides. Journal of Physical Chemistry B, 2006, 110, 13068-13071.	2.6	131
107	Fluorescence spectroscopic study of the phase transformation of γ-Al2O3at high temperatures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2065-2072.	1.8	16
108	TPD study on Cr/MgO catalysts for acrylonitrile synthesis from acetonitrile and methanol. Reaction Kinetics and Catalysis Letters, 2006, 89, 29-36.	0.6	5

#	Article	IF	CITATIONS
109	Ethylenediamine-Functionalized Resin-Supported Pd(0) Complex: An Effective and Recyclable Catalyst for Heck Vinylation. Chinese Journal of Chemistry, 2006, 24, 1309-1314.	4.9	13
110	The Mechanism Studies of Ethanol Oxidation on PdO Catalysts by TPSR Techniques. Catalysis Letters, 2004, 93, 139-144.	2.6	17
111	TPD, TPR study and catalytic activity of CuO/Ce0.7Sn0.3O2catalysts for low-temperature CO oxidation. Reaction Kinetics and Catalysis Letters, 2004, 81, 65-71.	0.6	4
112	Study on Fe/MgO catalysts for acrylonitrile synthesis from acetonitrile and methanol. Reaction Kinetics and Catalysis Letters, 2004, 82, 219-225.	0.6	1
113	Effects of type of contact between Co/SiO2and Pd/b on the direct synthesis of isoparaffins from synthesis gas. Reaction Kinetics and Catalysis Letters, 2004, 82, 247-253.	0.6	1
114	Study of Ce0.7Sn0.3O2 supported PdO catalysts for CO oxidation. Reaction Kinetics and Catalysis Letters, 2003, 79, 53-60.	0.6	5
115	Co Oxidation Activity And Tpr Characterization Of Ag-Mn Complex Oxide Catalysts. Reaction Kinetics and Catalysis Letters, 2001, 72, 289-295.	0.6	11
116	TPR and TPD studies of CuOCeO2 catalysts for low temperature CO oxidation. Applied Catalysis A: General, 1997, 162, 121-131.	4.3	372
117	Revealing the Different Roles of Sulfates on Pt/Al2O3 Catalyst for Methane and Propane Combustion. Catalysis Letters, 0, , 1.	2.6	7