Joaquim A Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6859934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adenosine receptors in the nervous system: pathophysiological implications. Progress in Neurobiology, 2002, 68, 377-392.	2.8	452
2	Caffeine and Adenosine. Journal of Alzheimer's Disease, 2010, 20, S3-S15.	1.2	360
3	Adenosine receptors and calcium: Basis for proposing a third (A3) adenosine receptor. Progress in Neurobiology, 1986, 26, 179-209.	2.8	284
4	Adenosine A2 receptor-mediated excitatory actions on the nervous system. Progress in Neurobiology, 1996, 48, 167-189.	2.8	275
5	Fine-tuning neuromodulation by adenosine. Trends in Pharmacological Sciences, 2000, 21, 341-346.	4.0	237
6	Preferential Release of ATP and Its Extracellular Catabolism as a Source of Adenosine upon High―but Not Lowâ€Frequency Stimulation of Rat Hippocampal Slices. Journal of Neurochemistry, 1996, 67, 2180-2187.	2.1	232
7	Adenosine: does it have a neuroprotective role after all?. Brain Research Reviews, 2000, 33, 258-274.	9.1	224
8	Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Research, 1994, 649, 208-216.	1.1	223
9	Inhibition by ATP of Hippocampal Synaptic Transmission Requires Localized Extracellular Catabolism by Ecto-Nucleotidases into Adenosine and Channeling to Adenosine A ₁ Receptors. Journal of Neuroscience, 1998, 18, 1987-1995.	1.7	207
10	Adenosine Receptors and the Central Nervous System. Handbook of Experimental Pharmacology, 2009, , 471-534.	0.9	204
11	Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience, 2002, 112, 319-329.	1.1	201
12	THE EFFECTS OF ADENOSINE TRIPHOSPHATE AND ADENOSINE DIPHOSPHATE ON TRANSMISSION AT THE RAT AND FROG NEUROMUSCULAR JUNCTIONS. British Journal of Pharmacology, 1975, 54, 213-218.	2.7	182
13	Cross Talk Between A ₁ and A _{2A} Adenosine Receptors in the Hippocampus and Cortex of Young Adult and Old Rats. Journal of Neurophysiology, 1999, 82, 3196-3203.	0.9	177
14	ATP as a presynaptic modulator. Life Sciences, 2000, 68, 119-137.	2.0	174
15	Activation of Adenosine A2A Receptor Facilitates Brain-Derived Neurotrophic Factor Modulation of Synaptic Transmission in Hippocampal Slices. Journal of Neuroscience, 2004, 24, 2905-2913.	1.7	161
16	Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. NeuroReport, 1995, 6, 1097-1100.	0.6	153
17	Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. European Journal of Neuroscience, 2011, 34, 12-21.	1.2	149
18	Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. British Journal of Pharmacology, 1996, 119, 253-260.	2.7	147

#	Article	IF	CITATIONS
19	Modification of A-i and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. NeuroReport, 1995, 6, 1583.	0.6	141
20	Excitatory and Inhibitory Effects of A ₁ and A _{2A} Adenosine Receptor Activation on the Electrically Evoked [³ H]Acetylcholine Release from Different Areas of the Rat Hippocampus. Journal of Neurochemistry, 1994, 63, 207-214.	2.1	141
21	On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction Journal of Physiology, 1987, 384, 571-585.	1.3	135
22	Early Changes of Neuromuscular Transmission in the SOD1(G93A) Mice Model of ALS Start Long before Motor Symptoms Onset. PLoS ONE, 2013, 8, e73846.	1.1	131
23	Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassium. Biochemical Pharmacology, 1979, 28, 1297-1300.	2.0	128
24	Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve endings of the rat. British Journal of Pharmacology, 1991, 103, 1614-1620.	2.7	128
25	Purinergic modulation of [3H]GABA release from rat hippocampal nerve terminals. Neuropharmacology, 2000, 39, 1156-1167.	2.0	126
26	A1R–A2AR heteromers coupled to Gs and Gi/O proteins modulate GABA transport into astrocytes. Purinergic Signalling, 2013, 9, 433-449.	1.1	123
27	Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neuroscience Letters, 1992, 138, 41-44.	1.0	121
28	Endogenous adenosine modulates long-term potentiation in the hippocampus. Neuroscience, 1994, 62, 385-390.	1.1	121
29	Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology, 2008, 54, 924-933.	2.0	120
30	EFFECT OF ADENOSINE ON CAROTID CHEMORECEPTOR ACTIVITY IN THE CAT. British Journal of Pharmacology, 1981, 74, 129-136.	2.7	119
31	Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. Journal of Neurophysiology, 1996, 76, 3910-3919.	0.9	119
32	Enhancement of LTP in Aged Rats is Dependent on Endogenous BDNF. Neuropsychopharmacology, 2011, 36, 1823-1836.	2.8	117
33	Adenosine: setting the stage for plasticity. Trends in Neurosciences, 2013, 36, 248-257.	4.2	112
34	Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 335, 143-8.	1.4	108
35	Lipid rafts, synaptic transmission and plasticity: Impact in age-related neurodegenerative diseases. Neuropharmacology, 2013, 64, 97-107.	2.0	102
36	Pharmacological characterization of the receptor involved in chemoexcitation induced by adenosine. British Journal of Pharmacology, 1986, 88, 615-620.	2.7	100

Joaquim A Ribeiro

#	Article	IF	CITATIONS
37	Enhanced Adenosine A2A Receptor Facilitation of Synaptic Transmission in the Hippocampus of Aged Rats. Journal of Neurophysiology, 2003, 90, 1295-1303.	0.9	97
38	Tuning and Fine-Tuning of Synapses with Adenosine. Current Neuropharmacology, 2009, 7, 180-194.	1.4	93
39	Increase in the Number, G Protein Coupling, and Efficiency of Facilitatory Adenosine A2A Receptors in the Limbic Cortex, but not Striatum, of Aged Rats. Journal of Neurochemistry, 2002, 73, 1733-1738.	2.1	92
40	Activation of Synaptic NMDA Receptors by Action Potential-Dependent Release of Transmitter during Hypoxia Impairs Recovery of Synaptic Transmission on Reoxygenation. Journal of Neuroscience, 2001, 21, 8564-8571.	1.7	89
41	The inhibitory adenosine receptor at the neuromuscular junction and hippocampus of the rat: antagonism by 1,3,8â€substituted xanthines. British Journal of Pharmacology, 1990, 101, 453-459.	2.7	88
42	Adenosine and Related Drugs in Brain Diseases: Present and Future in Clinical Trials. Current Topics in Medicinal Chemistry, 2011, 11, 1087-1101.	1.0	87
43	Influence of age on BDNF modulation of hippocampal synaptic transmission: Interplay with adenosine A2A receptors. Hippocampus, 2007, 17, 577-585.	0.9	85
44	Adenosine and neuronal plasticity. Life Sciences, 1996, 60, 245-251.	2.0	84
45	Modification of adenosine modulation of synaptic transmission in the hippocampus of aged rats. British Journal of Pharmacology, 2000, 131, 1629-1634.	2.7	83
46	Ecto-5'-Nucleotidase Is Associated with Cholinergic Nerve Terminals in the Hippocampus but Not in the Cerebral Cortex of the Rat. Journal of Neurochemistry, 1992, 59, 657-666.	2.1	82
47	Adenosine A2A Receptor Modulation of Hippocampal CA3-CA1 Synapse Plasticity During Associative Learning in Behaving Mice. Neuropsychopharmacology, 2009, 34, 1865-1874.	2.8	82
48	Adenosine A2A receptor interactions with receptors for other neurotransmitters and neuromodulators. European Journal of Pharmacology, 1999, 375, 101-113.	1.7	80
49	Adenosine A 2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus. Journal of Neurochemistry, 2005, 93, 595-604.	2.1	79
50	Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats. Neurobiology of Aging, 2014, 35, 1680-1685.	1.5	79
51	Purinergic Inhibition of Neurotransmitter Release in the Central Nervous System. Basic and Clinical Pharmacology and Toxicology, 1995, 77, 299-305.	0.0	77
52	Participation of adenosine receptors in neuroprotection. Drug News and Perspectives, 2003, 16, 80.	1.9	77
53	Enhancement of AMPA currents and GluR1 membrane expression through PKAâ€coupled adenosine A _{2A} receptors. Hippocampus, 2012, 22, 276-291.	0.9	76
54	Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety. Frontiers in Psychiatry, 2014, 5, 67.	1.3	76

#	Article	IF	CITATIONS
55	ZM241385 is an antagonist of the facilitatory responses produced by the A2A adenosine receptor agonists CGS21680 and HENECA in the rat hippocampus. British Journal of Pharmacology, 1997, 122, 1279-1284.	2.7	75
56	Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. Neuroscience Letters, 1995, 196, 41-44.	1.0	74
57	Endogenous Adenosine Attenuates Long-term Depression and Depotentiation in the CA1 Region of the Rat Hippocampus. Neuropharmacology, 1997, 36, 161-167.	2.0	73
58	Parallel modification of adenosine extracellular metabolism and modulatory action in the hippocampus of aged rats. Journal of Neurochemistry, 2001, 76, 372-382.	2.1	68
59	Tonic adenosine A2A receptor activation modulates nicotinic autoreceptor function at the rat neuromuscular junction. European Journal of Pharmacology, 1994, 271, 349-355.	1.7	67
60	Chapter 23 Purinergic regulation of acetylcholine release. Progress in Brain Research, 1996, 109, 231-241.	0.9	66
61	Adenosine modulates synaptic plasticity in hippocampal slices from aged rats. Brain Research, 1999, 851, 228-234.	1.1	66
62	Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience, 2006, 138, 1195-1203.	1.1	65
63	Adenosine inhibits the NMDA receptor-mediated excitatory postsynaptic potential in the hippocampus. Brain Research, 1993, 606, 351-356.	1.1	64
64	Interleukin-6 Upregulates Neuronal Adenosine A1 Receptors: Implications for Neuromodulation and Neuroprotection. Neuropsychopharmacology, 2008, 33, 2237-2250.	2.8	63
65	Purinergic Modulation of the Evoked Release of [3H]Acetylcholine from the Hippocampus and Cerebral Cortex of the Rat: Role of the Ectonucleotidases. European Journal of Neuroscience, 1994, 6, 33-42.	1.2	61
66	Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection. British Journal of Pharmacology, 2009, 158, 15-22.	2.7	61
67	Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology, 2016, 104, 226-242.	2.0	61
68	Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neuroscience Letters, 2006, 404, 143-147.	1.0	60
69	Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain Research, 2015, 1621, 102-113.	1.1	60
70	Brain-derived Neurotrophic Factor (BDNF) Enhances GABA Transport by Modulating the Trafficking of GABA Transporter-1 (GAT-1) from the Plasma Membrane of Rat Cortical Astrocytes. Journal of Biological Chemistry, 2011, 286, 40464-40476.	1.6	59
71	Neuronal P2 Receptors of the Central Nervous System. Current Topics in Medicinal Chemistry, 2004, 4, 831-838.	1.0	59
72	Inhibition of [3H]γ-aminobutyric acid release by kainate receptor activation in rat hippocampal synaptosomes. European Journal of Pharmacology, 1997, 323, 167-172.	1.7	58

Joaquim A Ribeiro

#	Article	IF	CITATIONS
73	Cortical Neurotoxic Astrocytes with Early ALS Pathology and miR-146a Deficit Replicate Gliosis Markers of Symptomatic SOD1G93A Mouse Model. Molecular Neurobiology, 2019, 56, 2137-2158.	1.9	56
74	Ectoâ€AMP Deaminase Blunts the ATPâ€Đerived Adenosine A 2A Receptor Facilitation of Acetylcholine Release at Rat Motor Nerve Endings. Journal of Physiology, 2003, 549, 399-408.	1.3	54
75	Modulation and metamodulation of synapses by adenosine. Acta Physiologica, 2010, 199, 161-169.	1.8	54
76	Homeostatic Control of Synaptic Activity by Endogenous Adenosine is Mediated by Adenosine Kinase. Cerebral Cortex, 2014, 24, 67-80.	1.6	54
77	Pertussis toxin prevents presynaptic inhibition by kainate receptors of rat hippocampal [3 H]GABA release. FEBS Letters, 2000, 469, 159-162.	1.3	53
78	Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience, 2003, 122, 111-121.	1.1	53
79	G Protein coupling of CGS 21680 binding sites in the rat hippocampus and cortex is different from that of adenosine A1 and striatal A2A receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 295-302.	1.4	52
80	Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GATâ€1. Journal of Neurochemistry, 2009, 109, 336-347.	2.1	52
81	On the adenosine receptor and adenosine inactivation at the rat diaphragm neuromuscular junction. British Journal of Pharmacology, 1988, 94, 109-120.	2.7	51
82	Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Research, 1999, 826, 104-111.	1.1	51
83	Activation of Adenosine A2A Receptors Induces TrkB Translocation and Increases BDNF-Mediated Phospho-TrkB Localization in Lipid Rafts: Implications for Neuromodulation. Journal of Neuroscience, 2010, 30, 8468-8480.	1.7	50
84	2-Chloroadenosine decreases long-term potentiation in the hippocampal CA1 area of the rat. Neuroscience Letters, 1990, 118, 107-111.	1.0	49
85	Presynaptic inhibitory receptors mediate the depression of synaptic transmission upon hypoxia in rat hippocampal slices. Brain Research, 2000, 869, 158-165.	1.1	48
86	Ageâ€related changes of glycine receptor at the rat hippocampus: from the embryo to the adult. Journal of Neurochemistry, 2011, 118, 339-353.	2.1	48
87	Regulation of Hippocampal Cannabinoid CB1 Receptor Actions by Adenosine A1 Receptors and Chronic Caffeine Administration: Implications for the Effects of Δ9-Tetrahydrocannabinol on Spatial Memory. Neuropsychopharmacology, 2011, 36, 472-487.	2.8	48
88	Adenosine A2A receptor facilitation of synaptic transmission in the CA1 area of the rat hippocampus requires protein kinase C but not protein kinase A activation. Neuroscience Letters, 2000, 289, 127-130.	1.0	47
89	Modulation of brain-derived neurotrophic factor (BDNF) actions in the nervous system by adenosine A2A receptors and the role of lipid rafts. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1340-1349.	1.4	47
90	Adenosine A2A receptors facilitate 45Ca2+ uptake through class A calcium channels in rat hippocampal CA3 but not CA1 synaptosomes. Neuroscience Letters, 1997, 238, 73-77.	1.0	46

#	Article	IF	CITATIONS
91	A functional role for adenosine A3 receptors: modulation of synaptic plasticity in the rat hippocampus. Neuroscience Letters, 2001, 302, 53-57.	1.0	46
92	On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. British Journal of Pharmacology, 1985, 84, 911-918.	2.7	45
93	P2Y ₁ receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes. Clia, 2014, 62, 1211-1226.	2.5	45
94	Kainate Receptors Coupled to G _i /G _o Proteins in the Rat Hippocampus. Molecular Pharmacology, 1999, 56, 429-433.	1.0	44
95	Potentiation by tonic A _{2a} â€adenosine receptor activation of CGRPâ€facilitated [³ H]â€ACh release from rat motor nerve endings. British Journal of Pharmacology, 1994, 111, 582-588.	2.7	43
96	Adenosine uptake and deamination regulate tonic A2a receptor facilitation of evoked [3H]acetylcholine release from the rat motor nerve terminals. Neuroscience, 1996, 73, 85-92.	1.1	43
97	What can Adenosine Neuromodulation do for Neuroprotection?. CNS and Neurological Disorders, 2005, 4, 325-329.	4.3	42
98	Brain-derived neurotrophic factor facilitates glutamate and inhibits GABA release from hippocampal synaptosomes through different mechanisms. Brain Research, 2004, 1016, 72-78.	1.1	41
99	Postsynaptic Action of Brain-Derived Neurotrophic Factor Attenuates Â7 Nicotinic Acetylcholine Receptor-Mediated Responses in Hippocampal Interneurons. Journal of Neuroscience, 2008, 28, 5611-5618.	1.7	41
100	Adenosine A ₁ Receptor Suppresses Tonic GABA _A Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons. Cerebral Cortex, 2016, 26, 1081-1095.	1.6	41
101	Evidence that the presynaptic A2a-adenosine receptor of the rat motor nerve endings is positively coupled to adenylate cyclase. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 514-22.	1.4	40
102	A functionally active presynaptic high-affinity kainate receptor in the rat hippocampal CA3 subregion. Neuroscience Letters, 1995, 185, 83-86.	1.0	39
103	Facilitation by P2 receptor activation of acetylcholine release from rat motor nerve terminals: interaction with presynaptic nicotinic receptors. Brain Research, 2000, 877, 245-250.	1.1	39
104	Immunologically Distinct Isoforms of Ecto-5′-Nucleotidase in Nerve Terminals of Different Areas of the Rat Hippocampus. Journal of Neurochemistry, 2001, 74, 334-338.	2.1	39
105	Ischemia-induced synaptic plasticity drives sustained expression of calcium-permeable AMPA receptors in the hippocampus. Neuropharmacology, 2013, 65, 114-122.	2.0	39
106	Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons. Brain Structure and Function, 2016, 221, 2777-2799.	1.2	39
107	Long-term potentiation observed upon blockade of adenosine A1 receptors in rat hippocampus is N-methyl-d-aspartate receptor-dependent. Neuroscience Letters, 2000, 291, 81-84.	1.0	38
108	Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Research, 2006, 1113, 129-136.	1.1	38

#	Article	IF	CITATIONS
109	VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. British Journal of Pharmacology, 2004, 143, 733-744.	2.7	37
110	Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation. Neuropharmacology, 2017, 117, 316-327.	2.0	37
111	Action of adenosine triphosphate on endplate potentials recorded from muscle fibres of the ratâ€diaphragm and frog sartorius. British Journal of Pharmacology, 1973, 49, 724-725.	2.7	36
112	Interactions between adenosine and phorbol esters or lithium at the frog neuromuscular junction. British Journal of Pharmacology, 1990, 100, 55-62.	2.7	36
113	Age-dependent decrease in adenosine A1receptor binding sites in the rat brain. FEBS Journal, 2001, 268, 2939-2947.	0.2	36
114	Regulation of TrkB receptor translocation to lipid rafts by adenosine A2A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity. Purinergic Signalling, 2014, 10, 251-267.	1.1	36
115	Effect of 5'-(N-Ethylcarboxamido)adenosine on Adenosine Transport in Cultured Chromaffin Cells. Journal of Neurochemistry, 1990, 54, 1941-1946.	2.1	33
116	Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Research, 2008, 1219, 19-25.	1.1	33
117	GDNF control of the glutamatergic corticoâ€striatal pathway requires tonic activation of adenosine A _{2A} receptors. Journal of Neurochemistry, 2009, 108, 1208-1219.	2.1	33
118	1,3-Dipropyl-8-cyclopentylxanthine attenuates the NMDA response to hypoxia in the rat hippocampus. Brain Research, 1994, 661, 265-273.	1.1	32
119	Modulation of the Rat Hippocampal Dinucleotide Receptor by Adenosine Receptor Activation. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 441-450.	1.3	32
120	Escitalopram improves memory deficits induced by maternal separation in the rat. European Journal of Pharmacology, 2012, 695, 71-75.	1.7	32
121	Enhancement of transmission at the frog neuromuscular junction by adenosine deaminase: Evidence for an inhibitory role of endogenous adenosine on neuromuscular transmission. Neuroscience Letters, 1985, 62, 267-270.	1.0	31
122	Adenosine by activating A1 receptors prevents GABAA-mediated actions during hypoxia in the rat hippocampus. Brain Research, 1996, 732, 261-266.	1.1	31
123	Dopamine–Galanin Receptor Heteromers Modulate Cholinergic Neurotransmission in the Rat Ventral Hippocampus. Journal of Neuroscience, 2011, 31, 7412-7423.	1.7	31
124	Adenosine A2A Receptors Activation Facilitates Neuromuscular Transmission in the Pre-Symptomatic Phase of the SOD1(G93A) ALS Mice, but Not in the Symptomatic Phase. PLoS ONE, 2014, 9, e104081.	1.1	31
125	Adenosine A _{2A} receptors facilitate synaptic NMDA currents in CA1 pyramidal neurons. British Journal of Pharmacology, 2018, 175, 4386-4397.	2.7	31
126	VIP enhances synaptic transmission to hippocampal CA1 pyramidal cells through activation of both VPAC1 and VPAC2 receptors. Brain Research, 2005, 1049, 52-60.	1.1	30

#	Article	IF	CITATIONS
127	Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus. British Journal of Pharmacology, 1997, 121, 1541-1548.	2.7	29
128	BDNF-induced presynaptic facilitation of GABAergic transmission in the hippocampus of young adults is dependent of TrkB and adenosine A2A receptors. Purinergic Signalling, 2016, 12, 283-294.	1.1	29
129	Tonic activation of A2A adenosine receptors unmasks, and of A1 receptors prevents, a facilitatory action of calcitonin gene-related peptide in the rat hippocampus. British Journal of Pharmacology, 2000, 129, 374-380.	2.7	28
130	A2A Adenosine Receptor Facilitation of Neuromuscular Transmission. Journal of Neurochemistry, 2002, 74, 2462-2469.	2.1	28
131	ZM 241385, an adenosine A2A receptor antagonist, inhibits hippocampal A1 receptor responses. European Journal of Pharmacology, 1999, 383, 395-398.	1.7	27
132	Modification by Arachidonic Acid of Extracellular Adenosine Metabolism and Neuromodulatory Action in the Rat Hippocampus. Journal of Biological Chemistry, 2000, 275, 37572-37581.	1.6	27
133	Cannabinoid CB1 and adenosine A1 receptors independently inhibit hippocampal synaptic transmission. European Journal of Pharmacology, 2009, 623, 41-46.	1.7	27
134	Chronic, intermittent treatment with a cannabinoid receptor agonist impairs recognition memory and brain network functional connectivity. Journal of Neurochemistry, 2018, 147, 71-83.	2.1	27
135	An Adenosine Analogue Inhibits NMDA Receptor-Mediated Responses in Bipolar Cells of the Rat Retina. Experimental Eye Research, 1999, 68, 367-370.	1.2	26
136	Hippocampal <scp>GABA</scp> ergic transmission: a new target for adenosine control of excitability. Journal of Neurochemistry, 2016, 139, 1056-1070.	2.1	26
137	Separation of adenosine triphosphate and its degradation products in innervated muscle of the frog by reverse phase high-performance liquid chromatography. Chromatographia, 1989, 28, 610-612.	0.7	25
138	Blockade of Adenosine A2A Receptors Prevents Protein Phosphorylation in the Striatum Induced by Cortical Stimulation. Journal of Neuroscience, 2006, 26, 10808-10812.	1.7	25
139	Predominance of Adenosine Excitatory over Inhibitory Effects on Transmission at the Neuromuscular Junction of Infant Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 153-163.	1.3	25
140	Dual Influence of Endocannabinoids on Long-Term Potentiation of Synaptic Transmission. Frontiers in Pharmacology, 2017, 8, 921.	1.6	25
141	Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission. Purinergic Signalling, 2015, 11, 471-480.	1.1	24
142	A1 and A2A receptor activation by endogenous adenosine is required for VIP enhancement of K+-evoked [3H]-GABA release from rat hippocampal nerve terminals. Neuroscience Letters, 2008, 430, 207-212.	1.0	23
143	Chapter 15 Adenine nucleotides as inhibitors of synaptic transmission: Role of localised ectonucleotidases. Progress in Brain Research, 1999, 120, 183-192.	0.9	22
144	Influence of stimulation on Ca2+ recruitment triggering [3H]acetylcholine release from the rat motor-nerve endings. European Journal of Pharmacology, 2000, 406, 355-362.	1.7	22

#	Article	IF	CITATIONS
145	Amyotrophic Lateral Sclerosis (ALS) and Adenosine Receptors. Frontiers in Pharmacology, 2018, 9, 267.	1.6	22
146	Hippocampal synaptic dysfunction in the SOD1G93A mouse model of Amyotrophic Lateral Sclerosis: Reversal by adenosine A2AR blockade. Neuropharmacology, 2020, 171, 108106.	2.0	22
147	Memory deficits induced by chronic cannabinoid exposure are prevented by adenosine A2AR receptor antagonism. Neuropharmacology, 2019, 155, 10-21.	2.0	21
148	VPAC ₁ and VPAC ₂ receptor activation on GABA release from hippocampal nerve terminals involve several different signalling pathways. British Journal of Pharmacology, 2017, 174, 4725-4737.	2.7	20
149	Contribution of metabotropic glutamate receptors to the depression of excitatory postsynaptic potentials during hypoxia. NeuroReport, 1997, 8, 3667-3671.	0.6	19
150	Mismatch novelty exploration training enhances hippocampal synaptic plasticity: A tool for cognitive stimulation?. Neurobiology of Learning and Memory, 2017, 145, 240-250.	1.0	19
151	Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacological Research, 2021, 163, 105363.	3.1	19
152	Effect of Adenosine on45Ca2+Uptake by Electrically Stimulatad Rat Brain Synapatosomes. Journal of Neurochemistry, 1991, 56, 1769-1773.	2.1	18
153	Persistence of the neuromodulatory effects of adenosine on synaptic transmission after long-term potentiation and long-term depression. Brain Research, 2002, 932, 56-60.	1.1	18
154	Tonic adenosine A1 and A2A receptor activation is required for the excitatory action of VIP on synaptic transmission in the CA1 area of the hippocampus. Neuropharmacology, 2007, 52, 313-320.	2.0	18
155	Facilitation of [3H]-ACh release by forskolin depends on A2-adenosine receptor activation. Neuroscience Letters, 1993, 151, 21-24.	1.0	17
156	Effects of Carbamazepine and Novel 10,11-Dihydro-5H -Dibenz[b,f]Azepine-5-Carboxamide Derivatives on Synaptic Transmission in Rat Hippocampal Slices. Basic and Clinical Pharmacology and Toxicology, 2002, 90, 208-213.	0.0	17
157	Endogenous inhibition of hippocampal LTD and depotentiation by vasoactive intestinal peptide VPAC ₁ receptors. Hippocampus, 2014, 24, 1353-1363.	0.9	17
158	Antagonism of tetrodotoxin―and procaineâ€induced axonal blockade by adenine nucleotides in the frog sciatic nerve. British Journal of Pharmacology, 1984, 81, 277-282.	2.7	16
159	Modulation of GABA Transport by Adenosine A1R-A2AR Heteromers, Which Are Coupled to Both Gs- and Gi/o-Proteins. Journal of Neuroscience, 2011, 31, 15629-15639.	1.7	16
160	Adenosine and the bradycardiac response to vagus nerve stimulation in rats. European Journal of Pharmacology, 1991, 204, 193-202.	1.7	14
161	Biological activities of N6,C8-disubstituted adenosine derivatives as partial agonists at rat brain adenosine A1 receptors. European Journal of Pharmacology, 1997, 334, 299-307.	1.7	14
162	Adenosine A3 receptors in the rat hippocampus: Lack of interaction with A1 receptors. Drug Development Research, 2003, 58, 428-438.	1.4	14

#	Article	IF	CITATIONS
163	Brain-derived neurotrophic factor mediates neuroprotection against A β -induced toxicity through a mechanism independent on adenosine 2A receptor activation. Growth Factors, 2015, 33, 298-308.	0.5	14
164	Hippocampal CA1 theta burstâ€induced LTP from weaning to adulthood: Cellular and molecular mechanisms in young male rats revisited. European Journal of Neuroscience, 2021, 54, 5272-5292.	1.2	14
165	Synergism between A2A-adenosine receptor activation and vasoactive intestinal peptide to facilitate [3H]-acetylcholine release from the rat motor nerve terminals. Neuroscience Letters, 2001, 309, 101-104.	1.0	13
166	Nitric oxide mediates interactions between GABAA receptors and adenosine A1 receptors in the rat hippocampus. European Journal of Pharmacology, 2006, 543, 32-39.	1.7	13
167	Vasoactive intestinal peptide in the hamster seminal vesicle: Distribution, binding sites and possible functions. Neuroscience, 1994, 59, 1083-1091.	1.1	12
168	Tonic adenosine neuromodulation is preserved in motor nerve endings of aged rats. Neurochemistry International, 2000, 36, 563-566.	1.9	12
169	The giant miniature endplate potentials frequency is increased in aged rats. Neuroscience Letters, 2015, 584, 224-229.	1.0	12
170	Excitatory actions of adenosine on ventricular automaticity. Trends in Pharmacological Sciences, 1996, 17, 141-144.	4.0	11
171	Facilitation of CABA release by arachidonic acid in rat hippocampal synaptosomes. European Journal of Neuroscience, 1999, 11, 2171-2174.	1.2	11
172	VPAC2 Receptor Activation Mediates VIP Enhancement of Population Spikes in the CA1 Area of the Hippocampus. Annals of the New York Academy of Sciences, 2006, 1070, 210-214.	1.8	11
173	Neuromuscular transmission modulation by adenosine upon aging. Neurobiology of Aging, 2012, 33, 2869-2880.	1.5	11
174	Adenosine A2 receptor activation facilitates 45Ca2+ uptake by rat brain synaptosomes. European Journal of Pharmacology, 1996, 310, 257-261.	1.7	10
175	Calcitonin Gene-Related Peptide in the Hamster Seminal Vesicle and Coagulating Gland: An Immunohistochemical, Autoradiographical, and Pharmacological Study. Peptides, 1996, 17, 1189-1195.	1.2	10
176	Adenosine-Dopamine Interactions and Ventilation Mediated Through Carotid Body Chemoreceptors. Advances in Experimental Medicine and Biology, 2002, 475, 671-684.	0.8	10
177	The Combined Inhibitory Effect of the Adenosine A ₁ and Cannabinoid CB ₁ Receptors on cAMP Accumulation in the Hippocampus Is Additive and Independent of A ₁ Receptor Desensitization. BioMed Research International, 2015, 2015, 1-9.	0.9	10
178	Caffeine has a dual influence on NMDA receptor–mediated glutamatergic transmission at the hippocampus. Purinergic Signalling, 2020, 16, 503-518.	1.1	10
179	Diadenosine polyphosphates facilitate the evoked release of acetylcholine from rat hippocampal nerve terminals. Brain Research, 2000, 879, 50-54.	1.1	9
180	Effects of Forskolin, Dibutyryl Cyclic AMP, and 5'N-Ethylcarboxamide Adenosine on22Na Uptake by Rat Brain Synaptosomes Stimulated by Veratridine. Journal of Neurochemistry, 1992, 58, 1033-1037.	2.1	8

#	Article	IF	CITATIONS
181	Presynaptic kainate receptors modulating glutamatergic transmission in the rat hippocampus are inhibited by arachidonic acid. Neurochemistry International, 2004, 44, 371-379.	1.9	8
182	N6-Cyclohexyladenosine Inhibits Veratridine-Stimulated Na Uptake by Rat Brain Synaptosomes. Journal of Neurochemistry, 1988, 50, 899-903.	2.1	7
183	From A1 to A3 en passant Through A2A Receptors in the Hippocampus: Pharmacological Implications. CNS and Neurological Disorders - Drug Targets, 2012, 11, 652-663.	0.8	7
184	Long-term depression is not modulated by ATP receptors in the rat CA1 hippocampal region. Neuroscience Letters, 2005, 383, 345-349.	1.0	6
185	Endogenous VIP VPAC1 Receptor Activation Modulates Hippocampal Theta Burst Induced LTP: Transduction Pathways and GABAergic Mechanisms. Biology, 2022, 11, 627.	1.3	6
186	Adenosine A3 Receptor Signaling in the Central Nervous System. , 2010, , 165-188.		5
187	Effects of adenosine and its analogues on ventricular automaticity induced by a local injury: role of catecholamines and of cyclic AMP. Archives Internationales De Pharmacodynamie Et De Thérapie, 1989, 297, 49-59.	0.2	5
188	Role of Adenosine Receptors in Epileptic Seizures. , 2018, , 309-350.		4
189	Adenosine, Cyclic AMP and Nerve Conduction. , 1987, , 559-573.		4
190	Caffeine and Adenosine Receptor Modulation of Cannabinoid Influence Upon Cognitive Function. Journal of Caffeine Research, 2013, 3, 85-95.	1.0	3
191	Downstream Pathways of Adenosine. , 2013, , 131-156.		3
192	The effects of adenosine, ATP and ADP on ventricular automaticity induced by a local injury in the isolated right ventricle of the rat. Archives Internationales De Pharmacodynamie Et De Thérapie, 1986, 279, 258-67.	0.2	3
193	Endogenous adenosine modulation of 22Na uptake by rat brain synaptosomes. Neurochemical Research, 2003, 28, 1591-1595.	1.6	2
194	Excitatory effects of dibutyryl cyclic AMP, noradrenaline and theophylline on 45Ca uptake by synaptosomes from rat brain. Archives Internationales De Pharmacodynamie Et De Thérapie, 1984, 270, 215-31.	0.2	2
195	Relative Contribution of Nerve Endings to the Release of Adenine Nucleotides in the Innervated from Sartorius Muscle. Nucleosides & Nucleotides, 1991, 10, 1189-1190.	0.5	1
196	Regulation of Synaptic Transmission by Adenosine at the Neuromuscular Junction. , 2017, , 77-96.		1
197	Adenosine and Its Receptors as Potential Drug Targets in Amyotrophic Lateral Sclerosis. Journal of Caffeine and Adenosine Research, 2019, 9, 157-166.	0.8	1
198	Adenosine A2A Receptors and Neurotrophic Factors: Relevance for Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 57-79.	0.4	1

#	Article	IF	CITATIONS
199	Involvement of ?-adrenoceptors in the excitatory effect of the A2 adenosine receptors agonist 5?-N-ethylcarboxamidoadenosine (NECA) on cardiac automaticity in the isolated right ventricle of the rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 632-7.	1.4	0
200	β,γ-Methylene ATP but Not α,β-Methylene ATP Mimicsthe Inhibitory Effect of ATP on Ventricular Automaticity. Basic and Clinical Pharmacology and Toxicology, 2008, 86, 68-70.	0.0	0