
Aaron Micallef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6859810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of marine geomorphometry, the quantitative study of the seafloor. Hydrology and Earth System Sciences, 2016, 20, 3207-3244.	4.9	158
2	A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Continental Shelf Research, 2012, 39-40, 14-26.	1.8	134
3	Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins. Science Advances, 2018, 4, eaar3748.	10.3	123
4	Construction of an oceanic island: Insights from the El Hierro (Canary Islands) 2011-2012 submarine volcanic eruption. Geology, 2013, 41, 355-358.	4.4	83
5	The submerged paleolandscape of the Maltese Islands: Morphology, evolution and relation to Quaternary environmental change. Marine Geology, 2013, 335, 129-147.	2.1	82
6	Tectonic expression of an active slab tear from highâ€resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics, 2016, 35, 39-54.	2.8	82
7	A topographic signature of a hydrodynamic origin for submarine gullies. Geology, 2011, 39, 115-118.	4.4	66
8	A consistent global approach for the morphometric characterization of subaqueous landslides. Geological Society Special Publication, 2019, 477, 455-477.	1.3	51
9	Morphology and mechanics of submarine spreading: A case study from the Storegga Slide. Journal of Geophysical Research, 2007, 112, .	3.3	50
10	Geomorphic response of submarine canyons to tectonic activity: Insights from the Cook Strait canyon system, New Zealand. , 2014, 10, 905-929.		49
11	Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Scientific Reports, 2018, 8, 1078.	3.3	49
12	3D characterisation and quantification of an offshore freshened groundwater system in the Canterbury Bight. Nature Communications, 2020, 11, 1372.	12.8	48
13	A technique for the morphological characterization of submarine landscapes as exemplified by debris flows of the Storegga Slide. Journal of Geophysical Research, 2007, 112, .	3.3	45
14	Development and mass movement processes of the north-eastern Storegga Slide. Quaternary Science Reviews, 2009, 28, 433-448.	3.0	44
15	From gradual spreading to catastrophic collapse – Reconstruction of the 1888 Ritter Island volcanic sector collapse from high-resolution 3D seismic data. Earth and Planetary Science Letters, 2019, 517, 1-13.	4.4	44
16	Scale invariant characteristics of the Storegga Slide and implications for large-scale submarine mass movements. Marine Geology, 2008, 247, 46-60.	2.1	38
17	The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data. Tectonophysics, 2016, 667, 63-76.	2.2	34
18	The Zanclean megaflood of the Mediterranean – Searching for independent evidence. Earth-Science Reviews, 2020, 201, 103061.	9.1	34

AARON MICALLEF

#	Article	IF	CITATIONS
19	From catastrophic collapse to multi-phase deposition: Flow transformation, seafloor interaction and triggered eruption following a volcanic-island landslide. Earth and Planetary Science Letters, 2019, 517, 135-147.	4.4	32
20	Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand. Geology, 2020, 48, 56-61.	4.4	31
21	Offshore Freshened Groundwater in Continental Margins. Reviews of Geophysics, 2021, 59, e2020RG000706.	23.0	31
22	Space-for-time substitution and the evolution of a submarine canyon–channel system in a passive progradational margin. Geomorphology, 2014, 221, 34-50.	2.6	29
23	Free gas distribution and basal shear zone development in a subaqueous landslide – Insight from 3D seismic imaging of the Tuaheni Landslide Complex, New Zealand. Earth and Planetary Science Letters, 2018, 502, 231-243.	4.4	28
24	Fluid flow systems of the Malta Plateau, Central Mediterranean Sea. Marine Geology, 2011, 284, 74-85.	2.1	26
25	Holocene sedimentary activity in a non-terrestrially coupled submarine canyon: Cook Strait Canyon system, New Zealand. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 104, 120-133.	1.4	26
26	Geomorphic evolution of the Malta Escarpment and implications for the Messinian evaporative drawdown in the eastern Mediterranean Sea. Geomorphology, 2019, 327, 264-283.	2.6	24
27	Records of black coral (Antipatharia) and red coral (Corallium rubrum) fishing activities in the Maltese Islands. Marine Biodiversity Records, 2010, 3, .	1.2	23
28	Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea. Geomorphology, 2014, 204, 1-20.	2.6	23
29	Seismic markers of the Messinian salinity crisis in the deep Ionian Basin. Basin Research, 2020, 32, 716-738.	2.7	22
30	How Offshore Groundwater Shapes the Seafloor. Eos, 2018, 99, .	0.1	22
31	Sediment dynamics and post-glacial evolution of the continental shelf around the Blanes submarine canyon head (NW Mediterranean). Progress in Oceanography, 2013, 118, 28-46.	3.2	21
32	Landslides Cause Tsunami Waves: Insights From Aysén Fjord, Chile. Eos, 2013, 94, 297-298.	0.1	21
33	Significance of the fine drainage pattern for submarine canyon evolution: The Foix Canyon System, Northwestern Mediterranean Sea. Geomorphology, 2013, 184, 20-37.	2.6	19
34	Outer shelf seafloor geomorphology along a carbonate escarpment: The eastern Malta Plateau, Mediterranean Sea. Continental Shelf Research, 2016, 131, 12-27.	1.8	19
35	The Graham Bank (Sicily Channel, central Mediterranean Sea): Seafloor signatures of volcanic and tectonic controls. Geomorphology, 2018, 318, 375-389.	2.6	19
36	Comparative analysis of estimators for wind direction standard deviation. Meteorological Applications, 2006, 13, 29.	2.1	17

AARON MICALLEF

#	Article	IF	CITATIONS
37	Submarine Canyons and Gullies. Springer Geology, 2018, , 251-272.	0.3	17
38	Making the Case for Marine Spatial Planning in the Maltese Islands. Ocean Development and International Law, 2011, 42, 136-154.	0.7	16
39	Late Quaternary coastal landscape morphology and evolution of the Maltese Islands (Mediterranean) Tj ETQq1 1 (411, 77-95.	0.784314 1.3	rgBT /Overlo 16
40	First characterisation of a <i>Leiopathes glaberrima</i> (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Italian Journal of Zoology, 0, , 1-10.	0.6	15
41	Proposal for the nomination of Lower Globigerina Limestone of the Maltese Islands as a "Global Heritage Stone Resource". Episodes, 2017, 40, 221-231.	1.2	14
42	Electrical Resistivity Anomalies Offshore a Carbonate Coastline: Evidence for Freshened Groundwater?. Geophysical Research Letters, 2021, 48, e2020GL091909.	4.0	13
43	Active degassing across the Maltese Islands (Mediterranean Sea) and implications for its neotectonics. Marine and Petroleum Geology, 2019, 104, 361-374.	3.3	12
44	The Tsunami Inundation Hazard of the Maltese Islands (Central Mediterranean Sea): A Submarine Landslide and Earthquake Tsunami Scenario Study. Pure and Applied Geophysics, 2020, 177, 1617-1638.	1.9	12
45	Seismic Reflection Methods in Offshore Groundwater Research. Geosciences (Switzerland), 2020, 10, 299.	2.2	12
46	Bottom current-controlled Quaternary sedimentation at the foot of the Malta Escarpment (Ionian) Tj ETQq0 0 0 r $_{ m s}$	gBT_/Overl 2 .1	ock 10 Tf 50
47	Marine Geomorphology. Developments in Earth Surface Processes, 2011, 15, 377-395.	2.8	11
48	A single-stage megaflood at the termination of the Messinian salinity crisis: Geophysical and modelling evidence from the eastern Mediterranean Basin. Marine Geology, 2020, 430, 106337.	2.1	11
49	Polyphase Emplacement of a 30 km3 Blocky Debris Avalanche and Its Role in Slope-Gully Development. , 2012, , 213-222.		11
50	Evidence of active fluid seepage (AFS) in the southern region of the central Mediterranean Sea. Measurement: Journal of the International Measurement Confederation, 2018, 128, 247-253.	5.0	10
51	Submarine Landslides. Springer Geology, 2018, , 235-250.	0.3	10
52	Multi-Layered High Permeability Conduits Connecting Onshore and Offshore Coastal Aquifers. Frontiers in Marine Science, 2020, 7, .	2.5	9
53	Groundwater erosion of coastal gullies along the Canterbury coast (New Zealand): a rapid and episodic process controlled by rainfall intensity and substrate variability. Earth Surface Dynamics, 2021, 9, 1-18.	2.4	9
54	Active faulting controls bedform development on a deep-water fan. Geology, 2021, 49, 1495-1500.	4.4	9

#	Article	IF	CITATIONS
55	3D Characterization of a Coastal Freshwater Aquifer in SE Malta (Mediterranean Sea) by Time-Domain Electromagnetics. Water (Switzerland), 2020, 12, 1566.	2.7	8
56	Malta's Submerged Landscapes and Landforms. World Geomorphological Landscapes, 2019, , 117-128.	0.3	8
57	Multiple drivers and controls of pockmark formation across the Canterbury Margin, New Zealand. Basin Research, 2022, 34, 1374-1399.	2.7	8
58	Shallow Gas and the Development of a Weak Layer in Submarine Spreading, Hikurangi Margin (New) Tj ETQq0 0	0 rgBT /O F:1	verlock 10 Tf 7
59	Could offshore groundwater rescue coastal cities?. Nature, 2019, 574, 36-36.	27.8	7
60	First report of live deep-water cnidarian assemblages from the Malta Escarpment. Italian Journal of Zoology, 2015, , 1-7.	0.6	5
61	Submarine spreading in the Storegga Slide, Norwegian Sea. Geological Society Memoir, 2016, 46, 411-412.	1.7	5
62	Submarine Mass Movements and Their Consequences: Progress and Challenges. Advances in Natural and Technological Hazards Research, 2016, , 1-12.	1.1	5
63	Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020655.	3.4	5
64	The Impact of Predicted Climate Change on Groundwater Resources in a Mediterranean Archipelago: A Modelling Study of the Maltese Islands. Water (Switzerland), 2021, 13, 3046.	2.7	5
65	Earthquake-Triggered Subaerial Landslides that Caused Large Scale Fjord Sediment Deformation: Combined Subaerial and Submarine Studies of the 2007 Aysén Fjord Event, Chile. , 2014, , 67-70.		4
66	A scenario-based assessment of the tsunami hazard in Palermo, northern Sicily, and the southern Tyrrhenian Sea. Geological Society Special Publication, 2020, 500, 63-80.	1.3	4
67	Depositional mechanism of the upper Pliocene-Pleistocene shelf-slope system of the western Malta Plateau (Sicily Channel). Sedimentary Geology, 2021, 417, 105882.	2.1	4
68	Submarine geomorphology. Geological Society Memoir, 2022, 58, 379-394.	1.7	4
69	Groundwater seepage is a key driver of theater-headed valley formation in limestone. Geology, 2022, 50, 686-690.	4.4	4
70	Architecture and sequence stratigraphy of the Upper Coralline Limestone formation, Malta—Implications for Eastern Mediterranean restriction prior to the Messinian Salinity Crisis. Depositional Record, 2021, 7, 256-270.	1.7	3
71	Impact of sea-level fluctuations on the sedimentation patterns of the SE African margin: implications for slope instability. Geological Society Special Publication, 2020, 500, 267-276.	1.3	2
72	Investigations on the Luminescence Properties of Quartz and Feldspars Extracted from Loess in the Canterbury Plains, New Zealand South Island. Geochronometria, 2021, 48, 46-60.	0.8	2

AARON MICALLEF

#	Article	IF	CITATIONS
73	Fractal statistics of the Storegga Slide. , 2007, , 3-10.		2
74	The role of fluid seepage in the erosion of Mesozoic carbonate escarpments. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006387.	2.8	2
75	Mesophotic Depth Biogenic Accumulations ("Biogenic Moundsâ€) Offshore the Maltese Islands, Central Mediterranean Sea. Frontiers in Marine Science, 2022, 9, .	2.5	2
76	Series solutions for turbulent plumes evolving in a natural environment. Journal of Engineering Thermophysics, 2014, 23, 236-255.	1.4	1
77	New measures of wind angular dispersion in three dimensions. , 2008, , .		1
78	Power series solutions for laminar plumes in a natural environment. Journal of Applied Mechanics and Technical Physics, 2014, 55, 781-792.	0.5	0
79	Submarine Canyons. , 2021, , .		Ο
80	An 1888 Volcanic Collapse Becomes a Benchmark for Tsunami Models. Eos, 2017, , .	0.1	0
81	Perspectives on Submarine Geomorphology: An Introduction. , 2021, , 811-811.		Ο
82	Testing the potential of using fine quartz for dating loess in South Island, New Zealand. Radiation Measurements, 2022, , 106788.	1.4	0