
Prakash Parthiban Selvakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685975/publications.pdf Version: 2024-02-01

Prakash Parthiban

#	Article	IF	CITATIONS
1	Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications. Tissue Engineering - Part B: Reviews, 2014, 20, 403-436.	2.5	218
2	Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science, 2021, 117, 100732.	16.0	81
3	Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 582-595.	1.3	70
4	Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. Journal of Materials Science: Materials in Medicine, 2009, 20, 43-48.	1.7	58
5	Combinatory Cancer Therapeutics with Nanoceria-Capped Mesoporous Silica Nanocarriers through pH-triggered Drug Release and Redox Activity. ACS Applied Materials & Interfaces, 2019, 11, 288-299.	4.0	52
6	Covalently immobilized VEGF-mimicking peptide with gelatin methacrylate enhances microvascularization of endothelial cells. Acta Biomaterialia, 2017, 51, 330-340.	4.1	49
7	Investigations on the inÂvitro bioactivity of swift heavy oxygen ion irradiated hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2009, 20, 271-275.	1.7	35
8	Combined Effects of Nanoroughness and lons Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration. ACS Applied Bio Materials, 2019, 2, 5190-5203.	2.3	29
9	Effect of swift heavy ion irradiation on hydrothermally synthesized hydroxyapatite ceramics. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 911-917.	0.6	24
10	Engineering pericyte-supported microvascular capillaries in cell-laden hydrogels using stem cells from the bone marrow, dental pulp and dental apical papilla. Scientific Reports, 2020, 10, 21579.	1.6	24
11	BoneMA—synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting of in-vitro vascularized tissue constructs. Biofabrication, 2021, 13, 035031.	3.7	21
12	Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method. Journal of Materials Science: Materials in Medicine, 2009, 20, 77-83.	1.7	19
13	Effect of urea on formation of hydroxyapatite through double-step hydrothermal processing. Materials Science and Engineering C, 2011, 31, 1383-1388.	3.8	18
14	Prevascularized hydrogels with mature vascular networks promote the regeneration of criticalâ€size calvarial bone defects in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 219-231.	1.3	18
15	Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing. Journal of Materials Science: Materials in Medicine, 2011, 22, 209-216.	1.7	9
16	Tetraaquadiglycinemagnesium(II) hexaaquamagnesium(II) bis(sulfate). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2901-m2902.	0.2	8
17	Effects of recipient age, heparin release and allogeneic bone marrow-derived stromal cells on vascular graft remodeling. Acta Biomaterialia, 2021, 125, 172-182.	4.1	8
18	Formation of serrated nanorods of hydroxyapatite through organic modification under hydrothermal processing. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	3

Prakash Parthiban

#	Article	IF	CITATIONS
19	Strategy to reduce carbonate incorporation in the fabrication of hydroxyapatite nanopowders. Journal of the Ceramic Society of Japan, 2011, 119, 947-953.	0.5	2
20	Nile Tilapia Fish Skin, Scales, and Spine as Naturally Derived Biomaterials for Tissue Regeneration. Current Oral Health Reports, 2020, 7, 335-343.	0.5	2
21	In vitrostudy of carbonated hydroxyapatite compacts prepared by double-step hydrothermal method. IOP Conference Series: Materials Science and Engineering, 2011, 18, 192008.	0.3	Ο