Heechul Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6859092/publications.pdf

Version: 2024-02-01

1307594 1058476 19 182 7 14 citations g-index h-index papers 20 20 20 227 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 248-257.	3.0	29
2	Contrast-enhanced ultrasound imaging <i>in vivo</i> with laser-activated nanodroplets. Medical Physics, 2017, 44, 3444-3449.	3.0	28
3	Super-Resolution Imaging With Ultrafast Ultrasound Imaging of Optically Triggered Perfluorohexane Nanodroplets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2277-2285.	3.0	27
4	Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets. Ultrasound in Medicine and Biology, 2019, 45, 1489-1499.	1.5	16
5	Investigation of light delivery geometries for photoacoustic applications using Monte Carlo simulations with multiple wavelengths, tissue types, and species characteristics. Journal of Biomedical Optics, 2020, 25, 1 .	2.6	14
6	Combined Multiwavelength Photoacoustic and Plane-Wave Ultrasound Imaging for Probing Dynamic Phase-Change Contrast Agents. IEEE Transactions on Biomedical Engineering, 2019, 66, 595-598.	4.2	11
7	Design and Demonstration of a Configurable Imaging Platform for Combined Laser, Ultrasound, and Elasticity Imaging. IEEE Transactions on Medical Imaging, 2019, 38, 1622-1632.	8.9	10
8	Ultrasound and Photoacoustic Imaging of Laser-Activated Phase-Change Perfluorocarbon Nanodroplets. Photonics, 2021, 8, 405.	2.0	9
9	Impact of depth-dependent optical attenuation on wavelength selection for spectroscopic photoacoustic imaging. Photoacoustics, 2018, 12, 46-54.	7.8	7
10	Photoacoustic speckle tracking for motion estimation and flow analysis. Journal of Biomedical Optics, 2018, 23, 1.	2.6	7
11	Ultrafast ultrasound imaging of surface acoustic waves induced by laser excitation compared with acoustic radiation force. Optics Letters, 2020, 45, 1810.	3.3	7
12	Fluid flow measurement for diagnosis of ventricular shunt malfunction using nonlinear responses of microbubbles in the contrast-enhanced ultrasound imaging. Japanese Journal of Applied Physics, 2017, 56, 07JF10.	1.5	6
13	Leveraging the Imaging Transmit Pulse to Manipulate Phase-Change Nanodroplets for Contrast-Enhanced Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 692-700.	3.0	6
14	Dual-Phase Transmit Focusing for Multiangle Compound Shear-Wave Elasticity Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1439-1449.	3.0	3
15	Notice of Removal: Multispectral ultrafast ultrasound imaging: A versatile tool probing dynamic phase-change contrast agents. , 2017, , .		1
16	Notice of Removal: Altering lipid shell composition enables the tunability of perfluorocarbon nanodroplets. , 2017, , .		1
17	Notice of Removal: On-demand gas-generating nanoparticles as an ultrasound imaging contrast agent. , 2017, , .		0
18	Notice of Removal: Time-shifted multi-tracking of shear waves for the characterization of scleral biomechanics. , 2017, , .		0

#	Article	IF	CITATIONS
19	Speed-of-sound Estimation of Dual-acoustic Waves using Laser-activated Nanodroplets. Journal of the Korean Physical Society, 2018, 73, 586-591.	0.7	O