Lorena Tuchscherr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6859062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Staphylococcus aureus</i> phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Molecular Medicine, 2011, 3, 129-141.	3.3	401
2	<i>Staphylococcus aureus</i> Smallâ€Colony Variants Are Adapted Phenotypes for Intracellular Persistence. Journal of Infectious Diseases, 2010, 202, 1031-1040.	1.9	240
3	Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections. PLoS Pathogens, 2015, 11, e1004870.	2.1	150
4	Staphylococcus aureus persistence in non-professional phagocytes. International Journal of Medical Microbiology, 2014, 304, 170-176.	1.5	123
5	<i>Staphylococcus aureus</i> develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. Journal of Antimicrobial Chemotherapy, 2016, 71, 438-448.	1.3	118
6	A Novel Mouse Model of Staphylococcus aureus Chronic Osteomyelitis That Closely Mimics the Human Infection. American Journal of Pathology, 2012, 181, 1206-1214.	1.9	107
7	Staphylococcus aureus isolates from chronic osteomyelitis are characterized by high host cell invasion and intracellular adaptation, but still induce inflammation. International Journal of Medical Microbiology, 2014, 304, 1038-1049.	1.5	84
8	Lack of changes in serum prolactin, FSH, TSH, and estradiol after melatonin treatment in doses that improve sleep and reduce benzodiazepine consumption in sleep-disturbed, middle-aged, and elderly patients. Journal of Pineal Research, 2001, 30, 34-42.	3.4	68
9	Staphylococcus aureus dynamically adapts global regulators and virulence factor expression in the course from acute to chronic infection. Current Genetics, 2016, 62, 15-17.	0.8	67
10	Persistence of Staphylococcus aureus: Multiple Metabolic Pathways Impact the Expression of Virulence Factors in Small-Colony Variants (SCVs). Frontiers in Microbiology, 2020, 11, 1028.	1.5	67
11	<i>Staphylococcus aureus</i> adaptation to the host and persistence: role of loss of capsular polysaccharide expression. Future Microbiology, 2010, 5, 1823-1832.	1.0	63
12	Combined Action of Influenza Virus and Staphylococcus aureus Panton–Valentine Leukocidin Provokes Severe Lung Epithelium Damage. Journal of Infectious Diseases, 2012, 206, 1138-1148.	1.9	59
13	Clinically Approved Drugs Inhibit the Staphylococcus aureus Multidrug NorA Efflux Pump and Reduce Biofilm Formation. Frontiers in Microbiology, 2019, 10, 2762.	1.5	58
14	Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. Materials Science and Engineering C, 2017, 77, 780-789.	3.8	57
15	Staphylococcal Strains Vary Greatly in Their Ability to Induce an Inflammatory Response in Endothelial Cells. Journal of Infectious Diseases, 2010, 201, 871-880.	1.9	53
16	Bacteria tracking by in vivo magnetic resonance imaging. BMC Biology, 2013, 11, 63.	1.7	53
17	Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis – where do we stand?. Expert Opinion on Drug Delivery, 2015, 12, 1351-1374.	2.4	53
18	Staphylococcus aureus-Derived α-Hemolysin Evokes Generation of Specialized Pro-resolving Mediators Promoting Inflammation Resolution. Cell Reports, 2020, 33, 108247.	2.9	47

LORENA TUCHSCHERR

#	Article	IF	CITATIONS
19	Clinical S. aureus Isolates Vary in Their Virulence to Promote Adaptation to the Host. Toxins, 2019, 11, 135.	1.5	36
20	MRI Visualization of Staphyloccocus aureus-Induced Infective Endocarditis in Mice. PLoS ONE, 2014, 9, e107179.	1.1	34
21	α-Hemolysin enhances <i>Staphylococcus aureus</i> internalization and survival within mast cells by modulating the expression of l²1 integrin. Cellular Microbiology, 2016, 18, 807-819.	1.1	29
22	Staphylococcus aureus Regulator Sigma B is Important to Develop Chronic Infections in Hematogenous Murine Osteomyelitis Model. Pathogens, 2017, 6, 31.	1.2	28
23	A Study on Acinetobacter baumannii and Staphylococcus aureus Strains Recovered from the Same Infection Site of a Diabetic Patient. Current Microbiology, 2019, 76, 842-847.	1.0	27
24	Selective Inactivation of Resistant Gram-Positive Pathogens with a Light-Driven Hybrid Nanomaterial. ACS Applied Materials & Interfaces, 2015, 7, 20965-20971.	4.0	25
25	The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices. Scientific Reports, 2017, 7, 13665.	1.6	22
26	A Novel Mouse Model of Staphylococcus aureus Vascular Graft Infection. American Journal of Pathology, 2017, 187, 268-279.	1.9	20
27	Correlation of crystal violet biofilm test results of <scp><i>Staphylococcus aureus</i></scp> clinical isolates with Raman spectroscopic readâ€out. Journal of Raman Spectroscopy, 2021, 52, 2660-2670.	1.2	18
28	Staphylococcus aureus requires less virulence to establish an infection in diabetic hosts. International Journal of Medical Microbiology, 2018, 308, 761-769.	1.5	17
29	Intracellular persistence of <i>Staphylococcus aureus</i> in endothelial cells is promoted by the absence of phenol-soluble modulins. Virulence, 2021, 12, 1186-1198.	1.8	17
30	Exotoxins from Staphylococcus aureus activate 5-lipoxygenase and induce leukotriene biosynthesis. Cellular and Molecular Life Sciences, 2020, 77, 3841-3858.	2.4	16
31	Auxotrophic mutant of Staphylococcus aureus interferes with nasal colonization by the wild type. Microbes and Infection, 2011, 13, 1081-1090.	1.0	14
32	Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model. Biomaterials, 2022, 287, 121632.	5.7	13
33	Optimized efflux assay for the NorA multidrug efflux pump in Staphylococcus aureus. Journal of Microbiological Methods, 2017, 142, 39-40.	0.7	12
34	Acapsular Staphylococcus aureus with a non-functional agr regains capsule expression after passage through the bloodstream in a bacteremia mouse model. Scientific Reports, 2020, 10, 14108.	1.6	8
35	Staphylococcus aureus α-Toxin Effect on Acinetobacter baumannii Behavior. Biology, 2022, 11, 570.	1.3	4
36	Staphylococcus aureus Toxins: Promoter or Handicap during Infection?. Toxins, 2021, 13, 287.	1.5	3