David L Hoover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6858313/publications.pdf

Version: 2024-02-01

411340 466096 2,016 33 20 32 citations h-index g-index papers 33 33 33 3233 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Repeated extreme droughts decrease root production, but not the potential for postâ€drought recovery of root production, in a mesic grassland. Oikos, 2023, 2023, .	1.2	10
2	Measuring the social and ecological performance of agricultural innovations on rangelands: Progress and plans for an indicator framework in the LTAR network. Rangelands, 2022, 44, 334-344.	0.9	8
3	Compound hydroclimatic extremes in a semiâ€arid grassland: Drought, deluge, and the carbon cycle. Global Change Biology, 2022, 28, 2611-2621.	4.2	40
4	Decline in biological soil crust N-fixing lichens linked to increasing summertime temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120975119.	3.3	24
5	Sensitivity of productivity to precipitation amount and pattern varies by topographic position in a semiarid grassland. Ecosphere, 2021, 12, e03376.	1.0	18
6	Drought resistance and resilience: The role of soil moisture–plant interactions and legacies in a dryland ecosystem. Journal of Ecology, 2021, 109, 3280-3294.	1.9	34
7	Semiarid grasslands and extreme precipitation events: do experimental results scale to the landscape?. Ecology, 2021, 102, e03437.	1.5	2
8	Resistance and resilience of a semi-arid grassland to multi-year extreme drought. Ecological Indicators, 2021, 131, 108139.	2.6	27
9	Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework. Ecological Indicators, 2021, 131, 108147.	2.6	16
10	Traversing the Wasteland: A Framework for Assessing Ecological Threats to Drylands. BioScience, 2020, 70, 35-47.	2.2	74
11	Largeâ€scale and local climatic controls on large herbivore productivity: implications for adaptive rangeland management. Ecological Applications, 2020, 30, e02053.	1.8	14
12	Mass ratio effects underlie ecosystem responses to environmental change. Journal of Ecology, 2020, 108, 855-864.	1.9	31
13	Seasonal and individual event-responsiveness are key determinants of carbon exchange across plant functional types. Oecologia, 2020, 193, 811-825.	0.9	5
14	Comparative analysis of water budgets across the U.S. long-term agroecosystem research network. Journal of Hydrology, 2020, 588, 125021.	2.3	24
15	Largeâ€Scale and Local Climatic Controls on Large Herbivore Productivity: Implications for Adaptive Rangeland Management. Bulletin of the Ecological Society of America, 2020, 101, e01665.	0.2	0
16	Rapid recovery of ecosystem function following extreme drought in a South African savanna grassland. Ecology, 2020, 101, e02983.	1.5	55
17	Comparing water-related plant functional traits among dominant grasses of the Colorado Plateau: Implications for drought resistance. Plant and Soil, 2019, 441, 207-218.	1.8	9
18	When does extreme drought elicit extreme ecological responses?. Journal of Ecology, 2019, 107, 2553-2563.	1.9	45

#	Article	IF	CITATIONS
19	Shrub persistence and increased grass mortality in response to drought in dryland systems. Global Change Biology, 2019, 25, 3121-3135.	4.2	60
20	Experimental droughts with rainout shelters: a methodological review. Ecosphere, 2018, 9, e02088.	1.0	83
21	Photosynthetic responses of a dominant C4 grass to an experimental heat wave are mediated by soil moisture. Oecologia, 2017, 183, 303-313.	0.9	9
22	Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 2017, 23, 4376-4385.	4.2	231
23	Testing the apparent resistance of three dominant plants to chronic drought on the Colorado Plateau. Journal of Ecology, 2017, 105, 152-162.	1.9	35
24	Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 2017, 23, 1774-1782.	4.2	132
25	The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1034-1044.	1.3	43
26	Shared Drivers but Divergent Ecological Responses: Insights from Long-Term Experiments in Mesic Savanna Grasslands. BioScience, 2016, 66, 666-682.	2.2	20
27	Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling. Global Change Biology, 2016, 22, 1809-1820.	4.2	109
28	Invasibility of a mesic grassland depends on the timeâ€scale of fluctuating resources. Journal of Ecology, 2015, 103, 1538-1546.	1.9	14
29	Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 2015, 21, 2624-2633.	4.2	233
30	Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems. Oecologia, 2015, 179, 1211-1221.	0.9	55
31	Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 2014, 95, 2646-2656.	1.5	458
32	Toward a better integration of biological data from precipitation manipulation experiments into Earth system models. Reviews of Geophysics, 2014, 52, 412-434.	9.0	39
33	A test of two mechanisms proposed to optimize grassland aboveground primary productivity in response to grazing. Journal of Plant Ecology, 2012, 5, 357-365.	1.2	59