## David L Hoover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6858313/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Repeated extreme droughts decrease root production, but not the potential for postâ€drought recovery of root production, in a mesic grassland. Oikos, 2023, 2023, .                                            | 2.7 | 10        |
| 2  | Measuring the social and ecological performance of agricultural innovations on rangelands:<br>Progress and plans for an indicator framework in the LTAR network. Rangelands, 2022, 44, 334-344.                | 1.9 | 8         |
| 3  | Compound hydroclimatic extremes in a semiâ€arid grassland: Drought, deluge, and the carbon cycle.<br>Global Change Biology, 2022, 28, 2611-2621.                                                               | 9.5 | 40        |
| 4  | Decline in biological soil crust N-fixing lichens linked to increasing summertime temperatures.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,<br>e2120975119. | 7.1 | 24        |
| 5  | Sensitivity of productivity to precipitation amount and pattern varies by topographic position in a semiarid grassland. Ecosphere, 2021, 12, e03376.                                                           | 2.2 | 18        |
| 6  | Drought resistance and resilience: The role of soil moisture–plant interactions and legacies in a<br>dryland ecosystem. Journal of Ecology, 2021, 109, 3280-3294.                                              | 4.0 | 34        |
| 7  | Semiarid grasslands and extreme precipitation events: do experimental results scale to the landscape?.<br>Ecology, 2021, 102, e03437.                                                                          | 3.2 | 2         |
| 8  | Resistance and resilience of a semi-arid grassland to multi-year extreme drought. Ecological<br>Indicators, 2021, 131, 108139.                                                                                 | 6.3 | 27        |
| 9  | Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework. Ecological Indicators, 2021, 131, 108147.                                                              | 6.3 | 16        |
| 10 | Traversing the Wasteland: A Framework for Assessing Ecological Threats to Drylands. BioScience, 2020, 70, 35-47.                                                                                               | 4.9 | 74        |
| 11 | Largeâ€scale and local climatic controls on large herbivore productivity: implications for adaptive rangeland management. Ecological Applications, 2020, 30, e02053.                                           | 3.8 | 14        |
| 12 | Mass ratio effects underlie ecosystem responses to environmental change. Journal of Ecology, 2020,<br>108, 855-864.                                                                                            | 4.0 | 31        |
| 13 | Seasonal and individual event-responsiveness are key determinants of carbon exchange across plant functional types. Oecologia, 2020, 193, 811-825.                                                             | 2.0 | 5         |
| 14 | Comparative analysis of water budgets across the U.S. long-term agroecosystem research network.<br>Journal of Hydrology, 2020, 588, 125021.                                                                    | 5.4 | 24        |
| 15 | Largeâ€Scale and Local Climatic Controls on Large Herbivore Productivity: Implications for Adaptive<br>Rangeland Management. Bulletin of the Ecological Society of America, 2020, 101, e01665.                 | 0.2 | 0         |
| 16 | Rapid recovery of ecosystem function following extreme drought in a South African savanna<br>grassland. Ecology, 2020, 101, e02983.                                                                            | 3.2 | 55        |
| 17 | Comparing water-related plant functional traits among dominant grasses of the Colorado Plateau:<br>Implications for drought resistance. Plant and Soil, 2019, 441, 207-218.                                    | 3.7 | 9         |
| 18 | When does extreme drought elicit extreme ecological responses?. Journal of Ecology, 2019, 107, 2553-2563.                                                                                                      | 4.0 | 45        |

DAVID L HOOVER

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Shrub persistence and increased grass mortality in response to drought in dryland systems. Global<br>Change Biology, 2019, 25, 3121-3135.                                            | 9.5  | 60        |
| 20 | Experimental droughts with rainout shelters: a methodological review. Ecosphere, 2018, 9, e02088.                                                                                    | 2.2  | 83        |
| 21 | Photosynthetic responses of a dominant C4 grass to an experimental heat wave are mediated by soil moisture. Oecologia, 2017, 183, 303-313.                                           | 2.0  | 9         |
| 22 | Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 2017, 23, 4376-4385. | 9.5  | 231       |
| 23 | Testing the apparent resistance of three dominant plants to chronic drought on the Colorado<br>Plateau. Journal of Ecology, 2017, 105, 152-162.                                      | 4.0  | 35        |
| 24 | Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 2017, 23, 1774-1782.                      | 9.5  | 132       |
| 25 | The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland.<br>Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1034-1044.        | 3.0  | 43        |
| 26 | Shared Drivers but Divergent Ecological Responses: Insights from Long-Term Experiments in Mesic<br>Savanna Grasslands. BioScience, 2016, 66, 666-682.                                | 4.9  | 20        |
| 27 | Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling. Global Change Biology, 2016, 22, 1809-1820.                | 9.5  | 109       |
| 28 | Invasibility of a mesic grassland depends on the timeâ€scale of fluctuating resources. Journal of Ecology, 2015, 103, 1538-1546.                                                     | 4.0  | 14        |
| 29 | Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Clobal Change Biology, 2015, 21, 2624-2633.           | 9.5  | 233       |
| 30 | Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems. Oecologia, 2015, 179, 1211-1221.                                               | 2.0  | 55        |
| 31 | Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 2014, 95, 2646-2656.                                                                                | 3.2  | 458       |
| 32 | Toward a better integration of biological data from precipitation manipulation experiments into Earth system models. Reviews of Geophysics, 2014, 52, 412-434.                       | 23.0 | 39        |
| 33 | A test of two mechanisms proposed to optimize grassland aboveground primary productivity in response to grazing. Journal of Plant Ecology, 2012, 5, 357-365.                         | 2.3  | 59        |