Marcia Maia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6858020/publications.pdf

Version: 2024-02-01

394421 345221 1,571 41 19 36 citations h-index g-index papers 45 45 45 1380 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology, 1995, 23, 49.	4.4	324
2	Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: Emplacement and rifting of the hot spot-derived plateaus. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	137
3	Characteristics and evolution of the segmentation of the Mid-Atlantic Ridge between 20°N and 24°N during the last 10 million years. Earth and Planetary Science Letters, 1995, 129, 55-71.	4.4	125
4	Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data. Geophysical Journal International, 2005, 160, 869-890.	2.4	103
5	A systematic analysis of the Mid-Atlantic Ridge morphology and gravity between 15°N and 40°N: Constraints of the thermal structure. Journal of Geophysical Research, 1998, 103, 24223-24243.	3.3	100
6	From rifting to spreading in the eastern Gulf of Aden: a geophysical survey of a young oceanic basin from margin to margin. Terra Nova, 2004, 16, 185-192.	2.1	96
7	Structure and evolution of the eastern Gulf of Aden: insights from magnetic and gravity data (Encens-Sheba MD117 cruise). Geophysical Journal International, 2006, 165, 786-803.	2.4	70
8	Extreme mantle uplift and exhumation along a transpressive transform fault. Nature Geoscience, 2016, 9, 619-623.	12.9	70
9	Volcanism, jump and propagation on the Sheba ridge, eastern Gulf of Aden: segmentation evolution and implications for oceanic accretion processes. Geophysical Journal International, 2010, 180, 535-551.	2.4	47
10	Ridge–hotspot interaction: the Pacific–Antarctic Ridge and the foundation seamounts. Marine Geology, 1999, 160, 199-223.	2.1	42
11	Three-dimensional gravity and bathymetry analysis of the Mid-Atlantic Ridge between 20°N and 24°N: Flow geometry and temporal evolution of the segmentation. Journal of Geophysical Research, 1998, 103, 951-974.	3.3	38
12	Evolution of the Pacific-Antarctic Ridge South of the Udintsev Fracture Zone. Science, 1997, 278, 1281-1284.	12.6	36
13	An analysis of the altimetric geoid in various wavebands in the Central Pacific Ocean: constraints on the origin of intraplate features. Tectonophysics, 1991, 190, 133-153.	2.2	34
14	A seafloor experiment to monitor vertical deformation at the Lucky Strike volcano, Mid-Atlantic Ridge. Journal of Geodesy, 2009, 83, 147-159.	3.6	32
15	Seismic structure of an oceanic core complex at the Midâ€Atlantic Ridge, 22°19â€2N. Journal of Geophysical Research, 2010, 115, .	3.3	32
16	Intraplate versus ridge volcanism on the Pacific-Antarctic Ridge near 37°S-111°W. Journal of Geophysical Research, 1997, 102, 12265-12286.	3.3	27
17	Contrasted interactions between plume, upper mantle, and lithosphere: Foundation chain case. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	26
18	Joint inversion of gravity and surface wave data constrained by magnetotelluric: Application to deep geothermal exploration of crustal fault zone in felsic basement. Geothermics, 2019, 80, 56-68.	3.4	21

#	Article	IF	CITATIONS
19	Geophysical fingerprints of hyper-extended, exhumed and embryonic oceanic domains: the example from the Iberia–Newfoundland rifted margins. Marine Geophysical Researches, 2016, 37, 185-205.	1.2	20
20	The support mechanism of the young Foundation Seamounts inferred from bathymetry and gravity. Geophysical Journal International, 2002, 149, 190-210.	2.4	19
21	Building of the Amsterdam-Saint Paul plateau: A 10 Myr history of a ridge-hot spot interaction and variations in the strength of the hot spot source. Journal of Geophysical Research, 2011, 116, .	3.3	19
22	Evolution of the accretion processes along the Mid-Atlantic Ridge north of the Azores since 5.5 Ma: An insight into the interactions between the ridge and the plume. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	15
23	Subsurface structure and stratigraphy of the northwest end of the Turkana Basin, Northern Kenya Rift, as revealed by magnetotellurics and gravity joint inversion. Journal of African Earth Sciences, 2016, 119, 120-138.	2.0	14
24	Semibrittle seismic deformation in high-temperature mantle mylonite shear zone along the Romanche transform fault. Science Advances, 2021, 7, .	10.3	14
25	Constraints on age and construction process of the Foundation chain submarine volcanoes from magnetic modeling. Earth and Planetary Science Letters, 2005, 235, 183-199.	4.4	12
26	Variability of the axial morphology and of the gravity structure along the Central Spreading Ridge (North Fiji Basin): evidence for contrasting thermal regimes. Marine Geophysical Researches, 1996, 18, 249-273.	1.2	11
27	Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge. Geochemistry, Geophysics, Geosystems, 2014, 15, 3198-3211.	2.5	11
28	A history of the Selkirk paleomicroplate. Tectonophysics, 2002, 359, 157-169.	2.2	10
29	The August 2010 earthquake swarm at North FAMOUS–FAMOUS segments, Mid-Atlantic Ridge: geophysical evidence of dike intrusion. Geophysical Journal International, 2018, 215, 181-195.	2.4	10
30	Antarctic blue whales (<i>Balaenoptera musculus intermedia</i>) recorded at the Equator in the Atlantic Ocean. Marine Mammal Science, 2019, 35, 641-648.	1.8	10
31	Topographic and Morphologic Evidences of Deformation at Oceanic Transform Faults: Far-Field and Local-Field Stresses., 2019,, 61-87.		10
32	Contrasted hydrothermal activity along the <scp>S</scp> outhâ€ <scp>E</scp> ast <scp>I</scp> ndian <scp>R</scp> idge (130°E–140°E): From crustal to ultramafic circulation. Geochemistry, Geophysics, Geosystems, 2017, 18, 2446-2458.	2.5	9
33	Occurrence and characterization of tremolite asbestos from the Mid Atlantic Ridge. Scientific Reports, 2021, 11, 6285.	3.3	9
34	Seafloor evidence for pre-shield volcanism above the Tristan da Cunha mantle plume. Nature Communications, 2020, 11, 4543.	12.8	5
35	Occurrence of Omura's whale, Balaenoptera omurai (Cetacea: Balaenopteridae), in the Equatorial Atlantic Ocean based on Passive Acoustic Monitoring. Journal of Mammalogy, 2020, 101, 1727-1735.	1.3	5
36	Development of a Lightweight Inertial Gravimeter for Use on Board an Autonomous Underwater Vehicle: Measurement Principle, System Design and Sea Trial Mission. Remote Sensing, 2022, 14, 2513.	4.0	3

#	Article	IF	CITATIONS
37	Uppermost Mantle Velocity beneath the Mid-Atlantic Ridge and Transform Faults in the Equatorial Atlantic Ocean. Bulletin of the Seismological Society of America, 2021, 111, 1067-1079.	2.3	2
38	Magnetic study of Saint Paul Fracture Zone, Equatorial Atlantic. , 2015, , .		1
39	The singular St. Peter and St. Paul Archipelago, equatorial Atlantic, Brazil. , 2022, , 121-165.		1
40	Multichannel 2D seismic reflection study of Mid-Atlantic Ridge: The St. Paul fracture zone region. , 2015, , .		0
41	Ocean fracture zones. , 2022, , 47-94.		0