
Thimmasettappa Thippeswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6857912/publications.pdf Version: 2024-02-01

Thimmasettappa

#	Article	IF	CITATIONS
1	Seizure-Induced Oxidative Stress in Temporal Lobe Epilepsy. BioMed Research International, 2015, 2015, 1-20.	0.9	160
2	Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy. Journal of Clinical Investigation, 2017, 127, 2118-2132.	3.9	90
3	Advantages of Repeated Low Dose against Single High Dose of Kainate in C57BL/6J Mouse Model of Status Epilepticus: Behavioral and Electroencephalographic Studies. PLoS ONE, 2014, 9, e96622.	1.1	78
4	Immediate Epileptogenesis after Kainate-Induced Status Epilepticus in C57BL/6J Mice: Evidence from Long Term Continuous Video-EEG Telemetry. PLoS ONE, 2015, 10, e0131705.	1.1	62
5	1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy. Neurobiology of Disease, 2016, 93, 184-200.	2.1	59
6	Status Epilepticus: Behavioral and Electroencephalography Seizure Correlates in Kainate Experimental Models. Frontiers in Neurology, 2018, 9, 7.	1.1	57
7	Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiology of Disease, 2018, 110, 102-121.	2.1	50
8	Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiology of Disease, 2020, 133, 104443.	2.1	39
9	<i>N</i> ^w â€Propylâ€ <scp>l</scp> â€arginine (Lâ€NPA) reduces status epilepticus and early epileptogenic events in a mouse model of epilepsy: behavioural, EEG and immunohistochemical analyses. European Journal of Neuroscience, 2012, 36, 3194-3203.	1.2	35
10	Regulation of activity-dependent neuroprotective protein (ADNP) by the NO-cGMP pathway in the hippocampus during kainic acid-induced seizure. Neurobiology of Disease, 2008, 30, 281-292.	2.1	28
11	Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy. Journal of Neuroscience Research, 2019, 97, 1363-1377.	1.3	27
12	Immediate epileptogenesis Impact on brain in C57BL 6J mouse kainate model. Frontiers in Bioscience - Elite, 2016, 8, 390-411.	0.9	25
13	Diapocynin, an NADPH oxidase inhibitor, counteracts diisopropylfluorophosphateâ€induced longâ€ŧerm neurotoxicity in the rat model. Annals of the New York Academy of Sciences, 2020, 1479, 75-93.	1.8	25
14	Fyn-tau Ablation Modifies PTZ-Induced Seizures and Post-seizure Hallmarks of Early Epileptogenesis. Frontiers in Cellular Neuroscience, 2020, 14, 592374.	1.8	24
15	Sex as a biological variable in the rat model of diisopropylfluorophosphateâ€induced longâ€ŧerm neurotoxicity. Annals of the New York Academy of Sciences, 2020, 1479, 44-64.	1.8	23
16	Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs, 2021, 35, 1-20.	2.7	23
17	NO-cGMP mediated galanin expression in NGF-deprived or axotomized sensory neurons. Journal of Neurochemistry, 2007, 100, 790-801.	2.1	20
18	Mechanisms of disease-modifying effect of saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor, in the rat kainate model of temporal lobe epilepsy. Neurobiology of Disease, 2021, 156, 105410.	2.1	20

Thimmasettappa

#	Article	IF	CITATIONS
19	Differential Impact of Severity and Duration of Status Epilepticus, Medical Countermeasures, and a Disease-Modifier, Saracatinib, on Brain Regions in the Rat Diisopropylfluorophosphate Model. Frontiers in Cellular Neuroscience, 2021, 15, 772868.	1.8	15
20	Saracatinib, a Src Tyrosine Kinase Inhibitor, as a Disease Modifier in the Rat DFP Model: Sex Differences, Neurobehavior, Gliosis, Neurodegeneration, and Nitro-Oxidative Stress. Antioxidants, 2022, 11, 61.	2.2	15
21	Nitric Oxide-NGF Mediated PPTA/SP, ADNP, and VIP Expression in the Peripheral Nervous System. Journal of Molecular Neuroscience, 2007, 33, 268-277.	1.1	14
22	Nitric Oxide Regulates Activity-Dependent Neuroprotective Protein (ADNP) in the Dentate Gyrus of the Rodent Model of Kainic Acid-Induced Seizure. Journal of Molecular Neuroscience, 2009, 39, 9-21.	1.1	12
23	DFP-Induced Status Epilepticus Severity in Mixed-Sex Cohorts of Adult Rats Housed in the Same Room: Behavioral and EEG Comparisons. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	12
24	How do the satellite glia cells of the dorsal root ganglia respond to stressed neurons? – nitric oxide saga from embryonic development to axonal injury in adulthood. Neuron Glia Biology, 2010, 6, 11-17.	2.0	11
25	The impact of postsynaptic density 95 blocking peptide (Tatâ€NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainateâ€induced epileptogenesis. Journal of Neuroscience Research, 2019, 97, 1378-1392.	1.3	11
26	Soman (GD) Rat Model to Mimic Civilian Exposure to Nerve Agent: Mortality, Video-EEG Based Status Epilepticus Severity, Sex Differences, Spontaneously Recurring Seizures, and Brain Pathology. Frontiers in Cellular Neuroscience, 2021, 15, 798247.	1.8	10
27	Characterization of Cortical Glial Scars in the Diisopropylfluorophosphate (DFP) Rat Model of Epilepsy. Frontiers in Cell and Developmental Biology, 2022, 10, 867949.	1.8	9
28	The effects of nitric oxide inhibition prior to kainic acid treatment on neuro- and gliogenesis in the rat dentate gyrus in vivo and in vitro. Histology and Histopathology, 2010, 25, 841-56.	0.5	9
29	The Impacts of Surgery and Intracerebral Electrodes in C57BL/6J Mouse Kainate Model of Epileptogenesis: Seizure Threshold, Proteomics, and Cytokine Profiles. Frontiers in Neurology, 2021, 12, 625017.	1.1	8
30	Differential Regulation of Vasoactive Intestinal Peptide (VIP) in the Dentate Gyrus and Hippocampus via the NO-cGMP Pathway Following Kainic Acid-Induced Seizure in the Rat. Journal of Molecular Neuroscience, 2010, 42, 359-369.	1.1	6
31	The effects of L-NAME on neuronal NOS and SOD1 expression in the DRG–spinal cord network of axotomised Thy 1.2 eGFP mice. Neuron Glia Biology, 2011, 7, 129-141.	2.0	3
32	In Focus: Disease promoters during epileptogenesis. Journal of Neuroscience Research, 2019, 97, 1333-1334.	1.3	0