Raju Bheemanahalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6857585/publications.pdf

Version: 2024-02-01

567281 434195 1,141 36 15 31 citations g-index h-index papers 38 38 38 1138 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetic control of source–sink relationships in grain sorghum. Planta, 2022, 255, 40.	3.2	1
2	Drought, Low Nitrogen Stress, and Ultraviolet-B Radiation Effects on Growth, Development, and Physiology of Sweetpotato Cultivars during Early Season. Genes, 2022, 13, 156.	2.4	13
3	Deep learning based high-throughput phenotyping of chalkiness in rice exposed to high night temperature. Plant Methods, 2022, 18, 9.	4.3	12
4	Phenotyping of Southern United States Soybean Cultivars for Potential Seed Weight and Seed Quality Compositions. Agronomy, 2022, 12, 839.	3.0	4
5	Morpho-Physiological, Yield, and Transgenerational Seed Germination Responses of Soybean to Temperature. Frontiers in Plant Science, 2022, 13, 839270.	3.6	11
6	Developing functional relationships between temperature and cover crop species vegetative growth and development. Agronomy Journal, 2021, 113, 1333-1348.	1.8	9
7	High night temperature effects on wheat and rice: Current status and way forward. Plant, Cell and Environment, 2021, 44, 2049-2065.	5.7	61
8	Genome-wide association study and gene network analyses reveal potential candidate genes for high night temperature tolerance in rice. Scientific Reports, 2021, 11, 6747.	3.3	10
9	Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum. Plant Physiology, 2021, 186, 1562-1579.	4.8	26
10	Physiological and pollen-based screening of shrub roses for hot and drought environments. Scientia Horticulturae, 2021, 282, 110062.	3.6	9
11	Assessment of agro-morphological, physiological and yield traits diversity among tropical rice. PeerJ, 2021, 9, e11752.	2.0	6
12	Morpho-Physiological Characterization of Diverse Rice Genotypes for Seedling Stage High- and Low-Temperature Tolerance. Agronomy, 2021, 11, 112.	3.0	17
13	Early Detection of Root-Knot Nematode (Meloidogyne Incognita) Infestation in Cotton Using Hyperspectral Data. , 2021, , .		2
14	Deterioration of ovary plays a key role in heat stressâ€induced spikelet sterility in sorghum. Plant, Cell and Environment, 2020, 43, 448-462.	5.7	40
15	High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. Plant, Cell and Environment, 2020, 43, 431-447.	5.7	49
16	Quantifying the agronomic performance of new grain sorghum hybrids for enhanced early-stage chilling tolerance. Field Crops Research, 2020, 258, 107955.	5.1	17
17	High-Temperature and Drought-Resilience Traits among Interspecific Chromosome Substitution Lines for Genetic Improvement of Upland Cotton. Plants, 2020, 9, 1747.	3.5	12
18	Improved cyber-physical system captured post-flowering high night temperature impact on yield and quality of field grown wheat. Scientific Reports, 2020, 10, 22213.	3.3	12

#	Article	IF	CITATIONS
19	Root anatomy based on root cross-section image analysis with deep learning. Computers and Electronics in Agriculture, 2020, 175, 105549.	7.7	11
20	Enhanced Nâ€metabolites, <scp>ABA</scp> and <scp>IAA</scp> â€conjugate in anthers instigate heat sensitivity in spring wheat. Physiologia Plantarum, 2020, 169, 501-514.	5.2	15
21	Root anatomical traits of wild-rices reveal links between flooded rice and dryland sorghum. Plant Physiology Reports, 2019, 24, 155-167.	1.5	7
22	Genetic dissection of photochemical efficiency under water-deficit stress in rice. Plant Physiology Reports, 2019, 24, 328-339.	1.5	2
23	Introgression of Root and Water Use Efficiency Traits Enhances Water Productivity: An Evidence for Physiological Breeding in Rice (Oryza sativa L.). Rice, 2019, 12, 14.	4.0	23
24	Quantifying the Impact of Heat Stress on Pollen Germination, Seed Set, and Grain Filling in Spring Wheat. Crop Science, 2019, 59, 684-696.	1.8	91
25	Integrating field-based heat tents and cyber-physical system technology to phenotype high night-time temperature impact on winter wheat. Plant Methods, 2019, 15, 41.	4.3	27
26	New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany, 2019, 70, 3357-3371.	4.8	31
27	Carbon balance and sourceâ€sink metabolic changes in winter wheat exposed to high nightâ€time temperature. Plant, Cell and Environment, 2019, 42, 1233-1246.	5.7	91
28	Sheathed Panicle Phenotype (cv. Sathi) Maintains Normal Spikelet Fertility and Grain Filling under Prolonged Heat Stress in Rice. Crop Science, 2018, 58, 1693-1705.	1.8	9
29	Integrated aerial and destructive phenotyping differentiates chilling stress tolerance during early seedling growth in sorghum. Field Crops Research, 2018, 227, 1-10.	5.1	28
30	Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice?. Field Crops Research, 2017, 203, 238-242.	5.1	76
31	Genomeâ€wide association mapping for phenotypic plasticity in rice. Plant, Cell and Environment, 2017, 40, 1565-1575.	5.7	45
32	Field crops and the fear of heat stressâ€"Opportunities, challenges and future directions. Field Crops Research, 2017, 200, 114-121.	5.1	290
33	Temperature thresholds for spikelet sterility and associated warming impacts for sub-tropical rice. Agricultural and Forest Meteorology, 2016, 221, 122-130.	4.8	48
34	Capturing heat stress induced variability in spikelet sterility using panicle, leaf and air temperature under field conditions. Field Crops Research, 2016, 190, 10-17.	5.1	25
35	Grain micronutrient composition and yield components in fieldâ€grown wheat are negatively impacted by high nightâ€time temperature. Cereal Chemistry, 0, , .	2.2	7
36	Low- and High-Temperature Phenotypic Diversity of Brassica carinata Genotypes for Early-Season Growth and Development. Frontiers in Plant Science, 0, 13, .	3.6	2