Li-Hua Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6857531/publications.pdf

Version: 2024-02-01

38	1,018	18	31
papers	citations	h-index	g-index
39	39	39	1148
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Efficient Protoplast Regeneration Protocol and CRISPR/Cas9-Mediated Editing of Glucosinolate Transporter (GTR) Genes in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2021, 12, 680859.	3.6	26
2	Establishment of an Efficient Protoplast Regeneration and Transfection Protocol for Field Cress (Lepidium campestre). Frontiers in Genome Editing, 2021, 3, 757540.	5.2	4
3	Plant based production of myoglobin - a novel source of the muscle heme-protein. Scientific Reports, 2020, 10, 920.	3.3	19
4	Transient expression and purification of \hat{l}^2 -caryophyllene synthase in <i>Nicotiana benthamiana</i> to produce \hat{l}^2 -caryophyllene in vitro. PeerJ, 2020, 8, e8904.	2.0	9
5	Development of Industrial Oil Crop Crambe abyssinica for Wax Ester Production through Metabolic Engineering and Cross Breeding. Plant and Cell Physiology, 2019, 60, 1274-1283.	3.1	9
6	Crambe hispanica Subsp. abyssinica Diacylglycerol Acyltransferase Specificities Towards Diacylglycerols and Acyl-CoA Reveal Combinatorial Effects That Greatly Affect Enzymatic Activity and Specificity. Frontiers in Plant Science, 2019, 10, 1442.	3.6	18
7	Consistent risk regulation? Differences in the European regulation of food crops. Journal of Risk Research, 2019, 22, 1561-1570.	2.6	3
8	Production of wax esters in the wild oil species Lepidium campestre. Industrial Crops and Products, 2017, 108, 535-542.	5.2	12
9	Crambe (Crambe abyssinica). , 2016, , 195-205.		10
10	Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production. Scientific Reports, 2016, 6, 22181.	3.3	46
11	Downâ€regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil. Plant Biotechnology Journal, 2016, 14, 323-331.	8.3	22
12	Combination of modern plant breeding and enzyme technology to obtain highly enriched erucic acid from Crambe oil. Sustainable Chemical Processes, 2016, 4, .	2.3	11
13	Significant increase of oleic acid level in the wild species Lepidium campestre through direct gene silencing. Plant Cell Reports, 2016, 35, 2055-2063.	5.6	16
14	Effects of Overexpression of WRI1 and Hemoglobin Genes on the Seed Oil Content of Lepidium campestre. Frontiers in Plant Science, 2016, 7, 2032.	3.6	16
15	RNAi Targeting Putative Genes in Phosphatidylcholine Turnover Results in Significant Change in Fatty Acid Composition in <i>Crambe abyssinica</i>	1.7	9
16	Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. Journal of Biotechnology, 2015, 204, 17-24.	3.8	103
17	Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid C rambe abyssinica. Plant Biotechnology Journal, 2014, 12, 193-203.	8.3	33
18	Platform crops amenable to genetic engineering – a requirement for successful production of bio-industrial oils through genetic engineering. Biocatalysis and Agricultural Biotechnology, 2014, 3, 58-64.	3.1	30

#	Article	IF	CITATIONS
19	Evaluation of a new vessel system based on temporary immersion system for micropropagation. Scientia Horticulturae, 2014, 179, 227-232.	3.6	63
20	Origin, timing, and gene expression profile of adventitious rooting in <i>Arabidopsis</i> hypocotyls and stems. American Journal of Botany, 2014, 101, 255-266.	1.7	41
21	Development of an efficient regeneration and transformation method for the new potential oilseed crop Lepidium campestre. BMC Plant Biology, 2013, 13, 115.	3.6	23
22	Efficient selection and evaluation of transgenic lines of Crambe abyssinica. Frontiers in Plant Science, 2013, 4, 162.	3.6	12
23	Functional analysis of the omega-6 fatty acid desaturase (CaFAD2) gene family of the oil seed crop Crambe abyssinica. BMC Plant Biology, 2013, 13, 146.	3.6	13
24	Development of ultraâ€high erucic acid oil in the industrial oil crop <i>Crambe abyssinica</i> . Plant Biotechnology Journal, 2012, 10, 862-870.	8.3	80
25	Highly efficient in vitro regeneration of the industrial oilseed crop Crambe abyssinica. Industrial Crops and Products, 2011, 33, 170-175.	5 . 2	24
26	Genetic transformation of the oilseed crop Crambe abyssinica. Plant Cell, Tissue and Organ Culture, 2010, 100, 149-156.	2.3	38
27	Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple. Transgenic Research, 2010, 19, 933-948.	2.4	48
28	Involvement of the ARRO-1 gene in adventitious root formation in apple. Plant Science, 2009, 177, 710-715.	3.6	36
29	Regeneration and genetic transformation of Hagenia abyssinica (Bruce) J.F. Gmel. (Rosaceae) with rolb gene. Plant Cell, Tissue and Organ Culture, 2007, 88, 277-288.	2.3	8
30	Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell, Tissue and Organ Culture, 2005, 81, 313-318.	2.3	34
31	Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle., 2005,, 253-261.		8
32	Infection by Agrobacterium tumefaciens increased the resistance of leaf explants to selective agents in carnation (Dianthus caryophyllus L. and D. chinensis). Plant Science, 2005, 168, 137-144.	3.6	9
33	The rooting ability of the dwarfing pear rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Science, 2003, 165, 829-835.	3.6	47
34	Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Science, 2001, 160, 433-439.	3.6	76
35	Integration of the <i>rol</i> A gene into the genome of the vigorous apple rootstock A2 reduced plant height and shortened internodes. Journal of Horticultural Science and Biotechnology, 2001, 76, 758-763.	1.9	20
36	The Arabidopsis phytochrome B gene influences growth of the apple rootstock M26. Plant Cell Reports, 2000, 19, 1049-1056.	5.6	17

#	Article	IF	Citations
37	Growth characteristics of apple cultivar Gravenstein plants grafted onto the transformed rootstock M26 with rolA and rolB genes under non-limiting nutrient conditions. Plant Science, 1999, 147, 75-80.	3.6	18
38	Invited Mini-Review Research Topic: Utilization of Protoplasts to Facilitate Gene Editing in Plants: Schemes for In Vitro Shoot Regeneration From Tissues and Protoplasts of Potato and Rapeseed: Implications of Bioengineering Such as Gene Editing of Broad-Leaved Plants. Frontiers in Genome Editing, 0, 4, .	5.2	4