
Spyros Kamnis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685712/publications.pdf Version: 2024-02-01

SDVDOS KAMNIS

#	Article	IF	CITATIONS
1	Roadmap on signal processing for next generation measurement systems. Measurement Science and Technology, 2022, 33, 012002.	1.4	12
2	Digital transformation of thermal and cold spray processes with emphasis on machine learning. Surface and Coatings Technology, 2022, 433, 128138.	2.2	17
3	Thermal Spray Coatings for Electromagnetic Wave Absorption and Interference Shielding: A Review and Future Challenges. Advanced Engineering Materials, 2022, 24, .	1.6	12
4	Influence of heat treatment on the microstructure and the physical and mechanical properties of dental highly translucent zirconia. Journal of Advanced Prosthodontics, 2022, 14, 96.	1.1	11
5	Wear rate at RT and 100°C and operating temperature range of microalloyed Cu50Zr50 shape memory alloy. Journal of Alloys and Compounds, 2020, 817, 153330.	2.8	8
6	A general-purpose spray coating deposition software simulator. Surface and Coatings Technology, 2020, 399, 126148.	2.2	13
7	Sliding wear behaviour of WC-Co reinforced NiCrFeSiB HVOAF thermal spray coatings against WC-Co and Al2O3 counterbodies. Surface and Coatings Technology, 2020, 386, 125468.	2.2	26
8	Thermal History Coatings: Part I — Influence of Atmospheric Plasma Spray Parameters on Performance. , 2020, , .		2
9	Effects and Interplays of Spray Angle and Stand-off Distance on the Sliding Wear Behavior of HVOF WC-17Co Coatings. Journal of Thermal Spray Technology, 2019, 28, 514-534.	1.6	18
10	Aeroacoustics and Artificial Neural Network Modeling of Airborne Acoustic Emissions During High Kinetic Energy Thermal Spraying. Journal of Thermal Spray Technology, 2019, 28, 946-962.	1.6	18
11	Effect of Particle and Carbide Grain Sizes on a HVOAF WC-Co-Cr Coating for the Future Application on Internal Surfaces: Microstructure and Wear. Journal of Thermal Spray Technology, 2018, 27, 207-219.	1.6	29
12	FIB-SEM Sectioning Study of Decarburization Products in the Microstructure of HVOF-Sprayed WC-Co Coatings. Journal of Thermal Spray Technology, 2018, 27, 898-908.	1.6	25
13	Prediction of Coating Properties of Thermally Sprayed WC–Co on Complex Geometries. Journal of Thermal Spray Technology, 2018, 27, 1025-1037.	1.6	6
14	Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part A: Influence of kinematic spray parameters on thickness, porosity, residual stresses and microhardness. Surface and Coatings Technology, 2017, 311, 206-215.	2.2	35
15	Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part B: Influence of kinematic spray parameters on microstructure, phase composition and decarburization of the coatings. Surface and Coatings Technology, 2017, 328, 499-512.	2.2	23
16	Computational Development of a Novel Aerosol Synthesis Technique for Production of Dense and Nanostructured Zirconia Coating. Industrial & Engineering Chemistry Research, 2016, 55, 7679-7695.	1.8	12
17	Modeling the Effects of Concentration of Solid Nanoparticles in Liquid Feedstock Injection on High-Velocity Suspension Flame Spray Process. Industrial & Engineering Chemistry Research, 2016, 55, 2556-2573.	1.8	13
18	Numerical study of molten and semi-molten ceramic impingement by using coupled Eulerian and Lagrangian method. Acta Materialia, 2015, 90, 77-87.	3.8	33

Spyros Kamnis

#	Article	IF	CITATIONS
19	Numerical investigation on effects of nanoparticles on liquid feedstock behavior in High Velocity Oxygen Fuel (HVOF) suspension spraying. Surface and Coatings Technology, 2015, 280, 370-377.	2.2	7
20	Numerical Analysis of Multicomponent Suspension Droplets in High-Velocity Flame Spray Process. Journal of Thermal Spray Technology, 2014, 23, 940-949.	1.6	17
21	Study of impingement of hollow ZrO2 droplets onto a substrate. Surface and Coatings Technology, 2013, 220, 164-169.	2.2	45
22	Numerical investigation of combustion and liquid feedstock in high velocity suspension flame spraying process. Surface and Coatings Technology, 2013, 228, 176-186.	2.2	22
23	Simulation of impact of a hollow droplet on a flat surface. Applied Physics A: Materials Science and Processing, 2012, 109, 101-109.	1.1	25
24	Numerical Study to Examine the Effect of Porosity on In-Flight Particle Dynamics. Journal of Thermal Spray Technology, 2011, 20, 630-637.	1.6	19
25	The Influence of Powder Porosity on the Bonding Mechanism at the Impact of Thermally Sprayed Solid Particles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 3517-3524.	1.1	12
26	Study of In-Flight and Impact Dynamics of Nonspherical Particles from HVOF Guns. Journal of Thermal Spray Technology, 2010, 19, 31-41.	1.6	25
27	Numerical modelling of in-flight particle dynamics of non-spherical powder. Surface and Coatings Technology, 2009, 203, 3485-3490.	2.2	29
28	Numerical modeling the bonding mechanism of HVOF sprayed particles. Computational Materials Science, 2009, 46, 1038-1043.	1.4	21
29	Numerical simulation of in-flight particle oxidation during thermal spraying. Computers and Chemical Engineering, 2008, 32, 1661-1668.	2.0	33
30	Mathematical modelling of Inconel 718 particles in HVOF thermal spraying. Surface and Coatings Technology, 2008, 202, 2715-2724.	2.2	42
31	Numerical modelling of sequential droplet impingements. Journal Physics D: Applied Physics, 2008, 41, 165303.	1.3	36
32	Computational simulation of thermally sprayed WC–Co powder. Computational Materials Science, 2008, 43, 1172-1182.	1.4	45
33	Computational fluid dynamic modelling of water-cooling mechanism during thermal spraying process. International Journal of Modelling, Identification and Control, 2007, 2, 229.	0.2	5
34	Numerical modelling of propane combustion in a high velocity oxygen–fuel thermal spray gun. Chemical Engineering and Processing: Process Intensification, 2006, 45, 246-253.	1.8	59
35	3-D modelling of kerosene-fuelled HVOF thermal spray gun. Chemical Engineering Science, 2006, 61, 5427-5439.	1.9	69
36	Numerical modelling of droplet impingement. Journal Physics D: Applied Physics, 2005, 38, 3664-3673.	1.3	74