Anatolii Ao Fedorchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6857052/publications.pdf

Version: 2024-02-01

236925 2,112 151 25 citations h-index papers

g-index 156 156 156 1456 docs citations times ranked citing authors all docs

330143

37

#	Article	IF	CITATIONS
1	Photoelectrical properties and the electronic structure of Tl1 \hat{a} °xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. Physical Chemistry Chemical Physics, 2013, 15, 6965.	2.8	167
2	Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1â°'xSex)4: experiment and theory. Physical Chemistry Chemical Physics, 2013, 15, 18979.	2.8	150
3	Electronic structure of Cu2ZnGeSe4 single crystal: Ab initio FP-LAPW calculations and X-ray spectroscopy measurements. Physica B: Condensed Matter, 2015, 461, 75-84.	2.7	53
4	Influence of electron beam irradiation on nonlinear optical properties of Al doped ZnO thin films for optoelectronic device applications in the cw laser regime. Optical Materials, 2016, 62, 64-71.	3.6	49
5	Crystal growth, electron structure and photo induced optical changes in novel AgxGaxGe1â^'xSe2 (x=0.333, 0.250, 0.200, 0.167) crystals. Optical Materials, 2012, 35, 65-73.	3.6	47
6	Electronic Structure of Quaternary Chalcogenide Ag ₂ In ₂ Ge(Si)S ₆ Single Crystals and the Influence of Replacing Ge by Si: Experimental X-Ray Photoelectron Spectroscopy and X-Ray Diffraction Studies and Theoretical Calculations. Science of Advanced Materials, 2013, 5, 316-327.	0.7	46
7	Electronic structure of non-centrosymmetric AgCd2GaS4 and AgCd2GaSe4 single crystals. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 559-566.	1.7	42
8	Single crystal growth and the electronic structure of orthorhombic Tl3PbBr5: A novel material for non-linear optics. Optical Materials, 2013, 35, 1081-1089.	3.6	42
9	Second anion coordination for wurtzite and sphalerite chalcogenide derivatives as a tool for the description of anion sub-lattice. Materials Chemistry and Physics, 2013, 139, 92-99.	4.0	37
10	Optical Spectra and Band Structure of Ag _{<i>x</i>} Ga _{<i>x</i>} Ge _{1â€"<i>x</i>} Se ₂ (<i>x</i> >= 0.333 15220-15231.	,) Tj_ETQq(0 0 orgBT /Ove
11	Single crystal growth and electronic structure of TlPbI3. Materials Chemistry and Physics, 2016, 172, 165-172.	4.0	36
12	Single crystal preparation and properties of the AgGaGeS4–AgGaGe3Se8 solid solution. Journal of Crystal Growth, 2011, 318, 708-712.	1.5	34
13	The Ag2S–ZnS–GeS2 system: Phase diagram, glass-formation region and crystal structure of Ag2ZnGeS4. Journal of Alloys and Compounds, 2010, 500, 26-29.	5.5	33
14	Third harmonic generation process in Al doped ZnO thin films. Journal of Alloys and Compounds, 2014, 584, 7-12.	5.5	33
15	Isothermal section of the Ag2S–PbS–GeS2 system at 300K and the crystal structure of Ag2PbGeS4. Journal of Alloys and Compounds, 2011, 509, 4264-4267.	5.5	32
16	Synthesis and structural properties of CulnGeS4. Journal of Crystal Growth, 2011, 324, 212-216.	1.5	31
17	Structural, photoinduced optical effects and third-order nonlinear optical studies on Mn doped and Mn–Al codoped ZnO thin films under continuous wave laser irradiation. Laser Physics, 2014, 24, 035404.	1.2	31
18	Crystal structure of the phases Hg5CIII2X8 (CIII=Ga, In; X=Se, Te). Journal of Alloys and Compounds, 2010, 503, 40-43.	5.5	30

#	Article	IF	CITATIONS
19	IR operated novel Ag0.98Cu0.02GaGe3Se8 single crystals. Journal of Physics and Chemistry of Solids, 2011, 72, 1354-1357.	4.0	29
20	Single crystal growth and the electronic structure of TlPb2Br5. Optical Materials, 2013, 36, 251-258.	3.6	29
21	First-principles band-structure calculations and X-ray photoelectron spectroscopy studies of the electronic structure of TIPb2Cl5. Journal of Alloys and Compounds, 2014, 582, 802-809.	5.5	29
22	Photoinduced Pockels effect in the Nd-doped ZnO oriented nanofilms. Applied Physics B: Lasers and Optics, 2013, 110, 419-423.	2.2	27
23	PbGa2GeS6 crystal as a novel nonlinear optical material: Band structure aspects. Journal of Alloys and Compounds, 2018, 740, 294-304.	5.5	27
24	Electronic structure and optical properties of Cs2HgI4: Experimental study and band-structure DFT calculations. Optical Materials, 2015, 42, 351-360.	3.6	26
25	Temperature operated infrared nonlinear optical materials based on Tl4Hgl6. Journal of Materials Science: Materials in Electronics, 2013, 24, 1187-1193.	2.2	25
26	X-ray spectroscopy study of the electronic structure of non-centrosymmetric Ag2CdSnS4 single crystal. Optical Materials, 2014, 36, 1396-1401.	3.6	25
27	ZnS/PVA nanocomposites for nonlinear optical applications. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 281-289.	2.7	25
28	Electronic structure of Cu2CdGeSe4 single crystal as determined from X-ray spectroscopy data. Materials Chemistry and Physics, 2015, 160, 345-351.	4.0	24
29	Formation of intermediate solid solutions in the quaternary exchange system Cu(ln,Ga)(S,Se)2–2Cd(S,Se). CrystEngComm, 2013, 15, 4838.	2.6	22
30	Specific features of the electronic structure of a novel ternary Tl3PbI5 optoelectronic material. Physical Chemistry Chemical Physics, 2014, 16, 12838.	2.8	21
31	Tl4SnS3, Tl4SnSe3 and Tl4SnTe3 crystals as novel IR induced optoelectronic materials. Journal of Materials Science: Materials in Electronics, 2016, 27, 3901-3905.	2.2	21
32	Effect of temperature on the structure and luminescence properties of Ag0.05Ga0.05Ge0.95S2-Er2S3 glasses. Journal of Luminescence, 2017, 181, 315-320.	3.1	21
33	X-ray photoelectron spectrum, X-ray diffraction data, and electronic structure of chalcogenide quaternary sulfide Ag2In2GeS6: experiment and theory. Journal of Materials Science, 2013, 48, 1342-1350.	3.7	20
34	Tl1â^'xIn1â^'xSnxSe2 (xÂ=Â0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials. Journal of Materials Science: Materials in Electronics, 2013, 24, 3555-3563.	2,2	20
35	Ionicity and birefringence of \hat{l}_{\pm} -LiNH ₄ SO ₄ crystals: ab initio DFT study, X-ray spectroscopy measurements. RSC Advances, 2017, 7, 6889-6901.	3.6	20
36	Ab initio calculations of the electronic structure and specific optical features of \hat{l}^2 -LiNH4SO4 single crystals. Physica B: Condensed Matter, 2018, 528, 37-46.	2.7	20

#	Article	IF	Citations
37	Photoconductivity and nonlinear optical features of novel Ag x Ga x Ge $1-x$ Se 2 crystals. Materials Research Bulletin, 2017, 85, 74-79.	5.2	19
38	Two-photon absorption of Tl1â^'xln1â^'xSnxSe2 (x=0, 0.1, 0.2, 0.25) single crystalline alloys and their nanocrystallites. Optical Materials, 2013, 35, 2514-2518.	3.6	17
39	Phase diagram of the quasi-binary system TllnSe2–SnSe2. Journal of Alloys and Compounds, 2011, 509, 2693-2696.	5.5	16
40	Huge operation by energy gap of novel narrow band gap $Tl < sub > 1a^2 < i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i > x < / i $	1.6	16
41	First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor. Journal of Alloys and Compounds, 2020, 826, 154232.	5.5	16
42	Specific Features of Content Dependences for Energy Gap in In _x Tl _{1-x} I Solid State Crystalline Alloys. Acta Physica Polonica A, 2018, 133, 68-75.	0.5	16
43	Physical properties of binary cerium gallides and ternary cerium-germanium gallides. Journal of the Less Common Metals, 1991, 167, 365-371.	0.8	15
44	Origin of electronic properties of PbGa2Se4 crystal: Experimental and theoretical investigations. Journal of Alloys and Compounds, 2015, 633, 415-423.	5.5	15
45	Growth, structure and optical properties of Tl4HgBr6 single crystals. Physica B: Condensed Matter, 2015, 479, 134-142.	2.7	15
46	Synthesis, structural, X-ray photoelectron spectroscopy (XPS) studies and IR induced anisotropy of Tl 4 Hgl 6 single crystals. Materials Chemistry and Physics, 2017, 187, 156-163.	4.0	15
47	Atomic Charges and Chemical Bonding in Y-Ga Compounds. Crystals, 2018, 8, 99.	2.2	15
48	CeNi3-type ternary phases in the Rî—,Niî—,Ga systems (R â‰; Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Journal Alloys and Compounds, 1995, 219, 222-224.	of 5.5	14
49	Photo induced anisotropy in the AgGaGe3Se8:Cu chalcogenide crystals. Materials Letters, 2013, 107, 218-220.	2.6	14
50	Single crystal growth, electronic structure and optical properties of Cs2HgBr4. Journal of Physics and Chemistry of Solids, 2015, 85, 254-263.	4.0	14
51	Relationships among optical and structural characteristics of ABSO4 crystals. Optical Materials, 2019, 95, 109221.	3.6	14
52	Physico-chemical interaction in the Tl2Se–HgSe–DIVSe2 systems (DIV – Si, Sn). Materials Research Bulletin, 2012, 47, 3830-3834.	5.2	13
53	Synthesis and spectral features of Ag2SnS3 crystals. Materials Chemistry and Physics, 2012, 135, 249-253.	4.0	12
54	Microcrystalline Bi2ZnB2O7-polymer composites with silver nanoparticles as materials for laser operated devices. Journal of Materials Science: Materials in Electronics, 2014, 25, 2426-2434.	2.2	12

#	Article	IF	CITATIONS
55	Laser-induced piezoelectricity in AgGaGe3–xSixSe8chalcogenide single crystals. EPJ Applied Physics, 2015, 70, 30501.	0.7	12
56	Electronic structure and laser induced piezoelectricity of a new quaternary compound TlinGe3S8. Materials Chemistry and Physics, 2018, 204, 336-344.	4.0	12
57	Structure, refractive and electronic properties of K2SO4:Cu2+ (3%) crystals. Current Applied Physics, 2021, 21, 80-88.	2.4	12
58	Structure and optical anisotropy of K1.75(NH4)0.25SO4 solid solution. Ukrainian Journal of Physical Optics, 2017, 18, 187.	13.0	12
59	Crystallochemical affinity and optical functions of ZrGa2 and ZrGa3 compounds. Journal of Alloys and Compounds, 2013, 546, 14-19.	5.5	11
60	Laser stimulated changes of the effective energy gap in chalcogenide CulnS2 photovoltaic films. Materials Science in Semiconductor Processing, 2015, 38, 184-187.	4.0	11
61	Novel AgGa 0.95 In 0.05 Ge 3 Se 8 crystalline alloys for light-operated piezoelectricity. Journal of Alloys and Compounds, 2016, 658, 408-413.	5 . 5	11
62	Significant photoinduced increment of reflectivity coefficient in LiNa 5 Mo 9 O 30. Current Applied Physics, 2017, 17, 1100-1107.	2.4	11
63	Laser stimulated piezo-optics of γ-irradiated (Ga55In45)2S300 and (Ga54.59In44.66Er0.75)2S300 single crystals. Journal of Alloys and Compounds, 2017, 722, 265-271.	5 . 5	11
64	Synthesis, structural, electronic and linear electro-optical features of new quaternary Ag2Ga2SiS6 compound. Journal of Solid State Chemistry, 2017, 246, 363-371.	2.9	11
65	TISbP2Se6 - a new layered single crystal: growth, structure and electronic properties. Journal of Alloys and Compounds, 2020, 848, 156485.	5.5	11
66	Phase relations in the Nd–Ga–Si system at 870 K. Journal of Alloys and Compounds, 2004, 367, 64-69.	5.5	10
67	Cubic structure types of rare-earth intermetallics and related compounds. Zeitschrift Fur Kristallographie - Crystalline Materials, 2006, 221, 482-492.	0.8	10
68	New compounds Cu2MnTi3S8 and Cu2NiTi3S8 with thiospinel structure. Materials Research Bulletin, 2007, 42, 143-148.	5.2	10
69	Crystal structure of the Ag2SiS3 compound. Journal of Alloys and Compounds, 2011, 509, 4372-4374.	5 . 5	10
70	The Cu2FeTi3S8 and Cu2FeZr3S8 compounds: Crystal structure and electroanalytical application. Materials Science and Engineering C, 2011, 31, 540-544.	7.3	10
71	Structural and optical properties of novel optoelectronic Tl1â^'xIn1â^'xSixSe2 single crystals. Journal of Materials Science: Materials in Electronics, 2014, 25, 3226-3232.	2.2	10
72	Electronic structure and optical properties of Cs 2 HgCl 4: DFT calculations and X-ray photoelectron spectroscopy measurements. Optical Materials, 2016, 60, 169-180.	3.6	10

#	Article	IF	CITATIONS
73	Tl10Hg3Cl16: Single crystal growth, electronic structure and piezoelectric properties. Journal of Solid State Chemistry, 2016, 242, 193-198.	2.9	10
74	Electronic and optical features of the mixed crystals Ag0.5Pb1.75Ge(S1–xSex)4. Journal of Materials Chemistry C, 2013, 1, 4667.	5.5	9
75	\hat{l}^2 -BaTeMo2O9 microcrystals as promising optically operated materials. Journal of Materials Science, 2013, 48, 5938-5945.	3.7	9
76	Optoelectronic features of novel infrared CuInS2–ZnIn2S4 crystalline alloys. Journal of Materials Science: Materials in Electronics, 2014, 25, 163-167.	2,2	9
77	Experimental and theoretical study of the electronic structure and optical spectral features of Pbln ₆ Te ₁₀ . RSC Advances, 2016, 6, 73107-73117.	3.6	9
78	Specific features of photoconductivity and photoinduced piezoelectricity in AgGaGe 3 Se 8 doped crystals. Optical Materials, 2017, 63, 197-206.	3.6	9
79	Spectral and conductivity features of novel ternary $1<\sup_{a\in\mathbb{Z}}1$ and conductivity features of novel ternary $1<\sup_{a\in\mathbb{Z}}1$ and 1 are the specific conditions of the specific conditions are the specific conditions of the specific co	1.3	8
80	The system Ag2Se–Ho2Se3 in the 0–50 mol.% Ho2Se3 range and the crystal structure of two polymorphic forms of AgHoSe2. Materials Research Bulletin, 2007, 42, 1091-1098.	5.2	7
81	Phase equilibria in the quasi-ternary system Ag2S–In2S3–CdS at 870K. Journal of Alloys and Compounds, 2009, 480, 360-364.	5.5	7
82	Band structure, density of states, and crystal chemistry of ZrGa2 and ZrGa3 single crystals. Journal of Alloys and Compounds, 2013, 556, 259-265.	5.5	7
83	Origin of anisotropy of the near band gap absorption in Tl4HgBr6 single crystals. Journal of Materials Chemistry C, 2014, 2, 2779.	5.5	7
84	Multiferroic Eu doped BiFeO3 microparticle polymer composites as materials for laser induced gratings. Journal of Materials Science: Materials in Electronics, 2015, 26, 9949-9954.	2.2	7
85	Third order nonlinear optical features of Bi2Fe4O9 multiferroic near antiferromagnetic phase transitions. Journal of Alloys and Compounds, 2016, 684, 412-418.	5.5	7
86	The Tl 2 S–PbS–SiS 2 system and the crystal and electronic structure of quaternary chalcogenide Tl 2 PbSiS 4. Materials Chemistry and Physics, 2017, 195, 132-142.	4.0	7
87	Highly anisotropic layered crystal AgBiP2Se6: Growth, electronic band-structure and optical properties. Materials Chemistry and Physics, 2022, 277, 125556.	4.0	7
88	Novel Derivatives of the Caln2 Type of Structure: Yb1+xMg1â€"xGa4 (0â‰ x â‰ v 0.058) and YLiGa4. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 2470-2478.	1.2	6
89	The crystal structure of a new ternary antimonide: TmCu4â°'xSb2 (x=1.065). Journal of Alloys and Compounds, 2005, 394, 156-159.	5.5	6
90	New representatives of the linear structure series containing empty Ga/Ge cubes in the Sm–Ga–Ge system. Journal of Solid State Chemistry, 2006, 179, 1323-1329.	2.9	6

#	Article	IF	CITATIONS
91	Bell-Like [Ga5] Clusters in Eu3Li5+xGa5-x (x = 0.15). European Journal of Inorganic Chemistry, 2011, 2011, 3904-3908.	2.0	6
92	Structural and optical features of novel Tl1â^'xIn1â^'xGexSe2 chalcogenide crystals. Optical Materials, 2014, 37, 614-620.	3.6	6
93	Experimental and theoretical investigation of the electronic structure and optical properties of TlHgCl3 single crystal. Optical Materials, 2015, 47, 445-452.	3.6	6
94	Growth of AgGaGe3â^'xSnxSe8 single crystals with light-operated piezoelectricity. Materials Letters, 2015, 161, 705-707.	2.6	6
95	Synthesis, electronic structure and optical properties of PbBr 1.2 I 0.8. Journal of Electron Spectroscopy and Related Phenomena, 2017, 218, 13-20.	1.7	6
96	Photo-induced anisotropy in ZnO/PVA nanocomposites prepared by modified electrochemical method in PMA matrix. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 184-189.	2.7	6
97	Photoinduced piezooptics effect in TeO2–Ga2O3 glasses. Solid State Sciences, 2015, 46, 56-61.	3.2	5
98	The influence of replacing Se by Te on electronic structure and optical properties of $TI4PbX3(X = Se \text{ or})$ Tj $ETQq0$	0	Oyerlock 10
99	Optically stimulated IR non-linear optical effects in the Tl3PbCl5 nanocrystallites. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 130-134.	2.7	5
100	A Novel Effect of CO2 Laser Induced Piezoelectricity in Ag2Ga2SiS6 Chalcogenide Crystals. Crystals, 2016, 6, 107.	2.2	5
101	Impact of anionic system modification on the desired properties for CuGa(S1â^'Se) 2 solid solutions. Computational Materials Science, 2021, 196, 110553.	3.0	5
102	The crystal structure of the new ternary antimonide Dy3Cu2O+xSb11â^'x (xâ‰^2). Journal of Solid State Chemistry, 2005, 178, 1874-1879.	2.9	4
103	Crystal structure and magnetism of the Fe6Ga6â^'xSi1+x (where xÂ=Â0.05) compound. Solid State Sciences, 2011, 13, 1755-1759.	3.2	4
104	Crystal structure of the Fe6â^'xGayGe5â^'y (x â^1/40.5, yÂ=Â1.3) ternary compound. Solid State Sciences, 2012, 14426-429.	¹ , _{3.2}	4
105	Laser stimulated kinetics effects on the phase transition of the ferromagnetic/superconducting MgB2/(CrO2) bilayer thin films. Journal of Alloys and Compounds, 2014, 594, 60-64.	5.5	4
106	Role of polytypism and degree of hexagonality on the photoinduced optical second harmonic generation in SiC nanocrystalline films. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 378-383.	2.7	4
107	PbGa6Te10 crystals for IR laser operated piezoelectricity. Materials Research Bulletin, 2018, 100, 131-137.	5.2	4
108	Crystal Structure and Chemical Bonding in Gallides of Rare-Earth Metals. Fundamental Theories of Physics, 2018, , 81-143.	0.3	4

#	Article	IF	CITATIONS
109	YAl3(BO3)4:TM (TM = Mn, Co, Cr) nanocrystals synthesis for laser operated nonlinear optics. Journal of Materials Science: Materials in Electronics, 2013, 24, 1485-1489.	2.2	3
110	IR operation by third harmonic generation of Tl4PbTe3 and Tl4SnS3 single crystals. Journal of Materials Science: Materials in Electronics, 2013, 24, 2410-2413.	2.2	3
111	Role of MgB2/Cr2O3 nano-interfaces in photoinduced nonlinear optical treatment of the MgB2 superconducting films. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 63, 180-185.	2.7	3
112	Photoinduced Optical Properties Of Tl1â^'xIn1â^'xSixSe2 Single Crystals. Archives of Metallurgy and Materials, 2015, 60, 1051-1055.	0.6	3
113	Laser operated piezoelectricity in Ag0.5Pb1.75GeS4 and Ag0.5Pb1.75GeS3Se crystals. Journal of Materials Science: Materials in Electronics, 2016, 27, 9589-9592.	2.2	3
114	Giant increase of optical transparency for Zn-rich CaxZn1â^'xO on Al2O3 (0001) grown by pulsed laser deposition. Optical Materials, 2016, 52, 1-5.	3.6	3
115	Crystal structure of R3Si1.75Se7 (R – 1.5 YÂ+ 1.5 La). Journal of Alloys and Compounds, 2018, 765, 731-735.	5.5	3
116	Partial Sn-atom ordering in Sm3Ga0.80–2.48Sn4.20–2.52. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, i125-i127.	0.4	2
117	AgCrTiS4: Synthesis, Properties, and Analytical Application. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2008, 39, 155-159.	2.1	2
118	Crystal structure of LuCu4â^'xSb2 (x=1.053). Journal of Alloys and Compounds, 2008, 462, 109-112.	5.5	2
119	TbGa2.64(4)Sn0.36(4) – A new close-packed structure type. Journal of Alloys and Compounds, 2012, 541, 23-28.	5.5	2
120	Optically induced anisotropy and electrooptics in ferroic organic nanocomposites. Optical and Quantum Electronics, 2013, 45, 1115-1124.	3.3	2
121	Optoelectronic operation in ferroic [NH2(C2H5)2]2CuxCo1â^'xCl4 nanocomposites. Journal of Materials Science: Materials in Electronics, 2013, 24, 4137-4141.	2.2	2
122	IR laser induced spectra in novel crystals CdTe–CuInTe2. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 116, 446-450.	3.9	2
123	The crystal structure of novel silver sulphogermanate Ag10Ge3S11. Journal of Alloys and Compounds, 2013, 576, 134-139.	5.5	2
124	Stabilization of an FeSi-type modification of the ternary NiGa0.82Si0.18, NiGa0.84Ge0.16 and NiAlo.46Si0.54 phases. Solid State Sciences, 2014, 29, 6-11.	3.2	2
125	Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films. Nanomaterials, 2015, 5, 541-553.	4.1	2
126	UV laser induced second order optical effects in the $\frac{Tl}_{4}hbox {PbTe}_{3}$, $hbox {Tl}_{4}hbox {SnSe}_{3}$ Tl 4 PbTe 3 , Tl 4 SnSe 3 and $\frac{Tl}_{4}hbox {PbSe}_{3}$ Tl 4 PbSe 3 single crystals. Optical and Quantum Electronics, 2015, 47, 185-192.	3.3	2

#	Article	IF	CITATIONS
127	Phase diagrams of novel Tl4SnSe4–TlSbSe2–Tl2SnSe3 quasi-ternary system following DTA and X-ray diffraction. Journal of Alloys and Compounds, 2016, 671, 109-113.	5. 5	2
128	Preparation, electronic structure and piezooptical properties of solid solutions Tl3PbBr5–I. Materials Chemistry and Physics, 2019, 227, 255-264.	4.0	2
129	Crystal structures of europium magnesium gallium, EuMgxGa4-x, and europium lithium gallium, EuLixGa4-x (x 0.5). Zeitschrift Fur Kristallographie - New Crystal Structures, 2005, 220, 337-338.	0.3	2
130	Crystal structure of the new quaternary copper manganese and zirconium chalcogenides. Physica Status Solidi (B): Basic Research, 2007, 244, 1288-1295.	1.5	1
131	Ternary Cr–Ga–Si system at 870 K. Materials Science, 2011, 46, 486-492.	0.9	1
132	Influence of different exchange correlation potentials on band structure and optical constant calculations of ZrGa2 and ZrGe2 single crystals. Computational Materials Science, 2013, 78, 134-139.	3.0	1
133	Photoinduced enhancement of optical second harmonic generation in LiB3O5 nanocrystallites embedded between the Ag/ITO electrodes. Journal of Materials Science: Materials in Electronics, 2013, 24, 4204-4208.	2.2	1
134	Laser stimulated piezoelectricity in Er3+ doped GeO2–Bi2O3 glasses containing silicon nanocrystals. Optical Materials, 2014, 38, 28-32.	3.6	1
135	Crystal structures and magnetism of DyAlxGa3â^'x (where xÂ=Â0.33 andÂxÂ=Â0.85). Solid State Sciences, 2014, 34, 63-68.	3.2	1
136	Second-order susceptibility spectra for $\hat{\Gamma}$ -BiB3O6 polymer nanocomposites deposited on the chalcogenide crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 146, 187-191.	3.9	1
137	Laser operation by photovoltaic features of kesterite Cu2ZnSnSexS4â^'x crystalline films. Journal of Materials Science: Materials in Electronics, 2015, 26, 5259-5262.	2.2	1
138	Specific features of photoinduced absorption and second harmonic generation of ferroic organic nanocomposites $F[hbox \{C]_{3}hbox \{H]_{7}hbox \{NH]_{3}]_{2}hbox \{MnCl]_{4}$$ [C 3 H 7 NH 3] 2 MnCl 4. Optical and Quantum Electronics, 2015, 47, 743-753.	3.3	1
139	Photoconductivity relaxation processes in AgCd 2 GaS 4 single crystals. Materials Chemistry and Physics, 2017, 200, 250-256.	4.0	1
140	Phase Equilibria in the System Tl9SbSe6–TlSbSe2–Tl4SnSe4. Russian Journal of Inorganic Chemistry, 2018, 63, 104-110.	1.3	1
141	Formation of surface nanolayers in chalcogenide crystals using coherent laser beams. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 302-307.	2.7	1
142	Investigations of the TlInp2Se6–In4(P2Se6)3 System and its Optical Properties. Hungarian Journal of Industrial Chemistry, 2017, 45, 13-18.	0.3	1
143	Physico-Chemical Interaction in the Ag2Se–Zn(Cd, Hg, Pb)Se–SnSe2 Systems. , 0, , .		1
144	The Co–Ga–Si ternary system at 870ÂK. Powder Metallurgy and Metal Ceramics, 2012, 51, 204-208.	0.8	0

#	Article	IF	CITATIONS
145	Light operated electrooptical materials based on the [(C2H5)3NH]2CuCl4/polymer nanocomposites. Journal of Materials Science: Materials in Electronics, 2014, 25, 1460-1465.	2.2	O
146	Laser operated optical features in \hat{I}^2 -BaTeMo2O9:Cr3+ nanocrystallites. Journal of Alloys and Compounds, 2015, 649, 327-331.	5.5	0
147	UV-induced acoustooptics of matrices containing BaHf(BO 3) 2 microcrystallites embedded into olygoetheracrylate photopolymer. Materials Chemistry and Physics, 2017, 187, 11-17.	4.0	0
148	Physicochemical Interaction in the TlInSe2–TlInP2Se6 System. Russian Journal of Inorganic Chemistry, 2018, 63, 537-542.	1.3	0
149	PHASE FORMATION BASED ON TlinP2Se6 COMPOUND. Scientific Bulletin of the Uzhhorod University Series «Chemistry», 2021, 45, .	0.1	0
150	Crystal structure of europium lithium gallium, EuLi0.24Ga1.76. Zeitschrift Fur Kristallographie - New Crystal Structures, 2005, 220, .	0.3	0
151	Tl2Se–TllnSe2–Tl4P2Se6 QUASITERNARY SYSTEM. Ukrainian Chemical Journal, 2019, 85, 101-110.	0.3	0