Jakub WiÄčkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6857028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Swimmer Assessment Model (SWAM): Expert System Supporting Sport Potential Measurement. IEEE Access, 2022, 10, 5051-5068.	2.6	5
2	Dealing withÂNonmonotonic Criteria inÂDecision-Making Problems Using Fuzzy Normalization. Lecture Notes in Networks and Systems, 2022, , 27-35.	0.5	1
3	Decision Support in Selecting a Reliable Strategy for Sustainable Urban Transport Based on Laplacian Energy of T-Spherical Fuzzy Graphs. Energies, 2022, 15, 4970.	1.6	15
4	A New Approach to Eliminate Rank Reversal in the MCDA Problems. Lecture Notes in Computer Science, 2021, , 338-351.	1.0	22
5	A Study of Different Distance Metrics in the TOPSIS Method. Smart Innovation, Systems and Technologies, 2021, , 275-284.	0.5	5
6	Methodical Aspects of MCDM Based E-Commerce Recommender System. Journal of Theoretical and Applied Electronic Commerce Research, 2021, 16, 2192-2229.	3.1	52
7	Comparative Analysis of Solar Panels with Determination of Local Significance Levels of Criteria Using the MCDM Methods Resistant to the Rank Reversal Phenomenon. Energies, 2021, 14, 5727.	1.6	37
8	How to determine complex MCDM model in the COMET method? Automotive sport measurement case study. Procedia Computer Science, 2021, 192, 376-386.	1.2	4
9	New Rank-Reversal Free Approach to Handle Interval Data in MCDA Problems. Lecture Notes in Computer Science, 2021, , 458-472.	1.0	7
10	Toward Reliability in the MCDA Rankings: Comparison of Distance-Based Methods. Smart Innovation, Systems and Technologies, 2021, , 321-329.	0.5	4
11	A fuzzy assessment model for freestyle swimmers - a comparative analysis of the MCDA methods. Procedia Computer Science, 2021, 192, 4148-4157.	1.2	9
12	Decision-Making Problems with Local Extremes: Comparative Study Case. Lecture Notes in Computer Science, 2021, , 453-462.	1.0	1
13	The Usage of Possibility Degree in the Multi-criteria Decision-Analysis Problems. Lecture Notes in Computer Science, 2021, , 330-341.	1.0	1
14	Can weighting methods provide similar results in MCDA problems? Selection of energetic materials study case. Procedia Computer Science, 2021, 192, 4592-4601.	1.2	5
15	STUDY TOWARDS THE TIME-BASED MCDA RANKING ANALYSIS – A SUPPLIER SELECTION CASE STUDY. Facta Universitatis, Series: Mechanical Engineering, 2021, 19, 381.	2.3	36
16	Similarity Analysis of Methods for Objective Determination of Weights in Multi-Criteria Decision Support Systems. Symmetry, 2021, 13, 1874.	1.1	36
17	Towards Innovative MCDM-based Sustainable Consumer Choices System: Automotive Evaluation Case Study. , 2021, , .		1
18	Multi-Criteria Assessment of Swimmers' Predispositions to Compete in Swimming Styles. , 2021, , .		1

Јакив ѠเӒ™скоѡѕкі

#	Article	IF	CITATIONS
19	A New Entropy Measurement for the Analysis of Uncertain Data in MCDA Problems Using Intuitionistic Fuzzy Sets and COPRAS Method. Axioms, 2021, 10, 335.	0.9	17
20	Towards an e-commerce recommendation system based on MCDM methods. , 2021, , .		2
21	Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry, 2020, 12, 1549.	1.1	248
22	Why TOPSIS does not always give correct results?. Procedia Computer Science, 2020, 176, 3591-3600.	1.2	14
23	Fuzzy Model Identification Using Monolithic and Structured Approaches in Decision Problems with Partially Incomplete Data. Symmetry, 2020, 12, 1541.	1.1	37
24	Efficiency of Methods for Determining the Relevance of Criteria in Sustainable Transport Problems: A Comparative Case Study. Sustainability, 2020, 12, 7915.	1.6	46
25	A comparative case study of the VIKOR and TOPSIS rankings similarity. Procedia Computer Science, 2020, 176, 3730-3740.	1.2	57
26	How to Apply Fuzzy MISO PID in the Industry? An Empirical Study Case on Simulation of Crane Relocating Containers. Electronics (Switzerland), 2020, 9, 2017.	1.8	5
27	A Fuzzy Inference System for Players Evaluation in Multi-Player Sports: The Football Study Case. Symmetry, 2020, 12, 2029.	1.1	37
28	Do distance-based multi-criteria decision analysis methods create similar rankings?. Procedia Computer Science, 2020, 176, 3718-3729.	1.2	14
29	Swimming progression evaluation by assessment model based on the COMET method. Procedia Computer Science, 2020, 176, 3514-3523.	1.2	12
30	A New Method to Support Decision-Making in an Uncertain Environment Based on Normalized Interval-Valued Triangular Fuzzy Numbers and COMET Technique. Symmetry, 2020, 12, 516.	1.1	68
31	Application of Hill Climbing Algorithm in Determining the Characteristic Objects Preferences Based on the Reference Set of Alternatives. Smart Innovation, Systems and Technologies, 2020, , 341-351.	0.5	10
32	The Search of the Optimal Preference Values of the Characteristic Objects by Using Particle Swarm Optimization in the Uncertain Environment. Smart Innovation, Systems and Technologies, 2020, , 353-363.	0.5	11
33	Finding an Approximate Global Optimum of Characteristic Objects Preferences by Using Simulated Annealing. Smart Innovation, Systems and Technologies, 2020, , 365-375.	0.5	11