HerlĢnder Azevedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6857016/publications.pdf

Version: 2024-02-01

33 papers 986

15 h-index 30 g-index

36 all docs 36 docs citations

36 times ranked

1545 citing authors

#	Article	IF	CITATIONS
1	SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. Plant Physiology, 2022, 189, 934-954.	4.8	8
2	Feasibility of applying shotgun metagenomic analyses to grapevine leaf, rhizosphere and soil microbiome characterisation. Australian Journal of Grape and Wine Research, 2021, 27, 519-526.	2.1	4
3	Pervasive hybridization with local wild relatives in Western European grapevine varieties. Science Advances, 2021, 7, eabi8584.	10.3	11
4	Rice F-bZIP transcription factors regulate the zinc deficiency response. Journal of Experimental Botany, 2020, 71, 3664-3677.	4.8	49
5	Plant hexokinase phylogenetic analysis highlights a possible regulation by the posttranslational modifier SUMO. MicroPublication Biology, 2020, 2020, .	0.1	1
6	growth is independently controlled by the SUMO E3 ligase SIZ1 and Hexokinase 1. MicroPublication Biology, 2020, 2020, .	0.1	2
7	Sugar signaling regulation by arabidopsis SIZ1-driven sumoylation is independent of salicylic acid. Plant Signaling and Behavior, 2018, 13, e1179417.	2.4	7
8	Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development. Journal of Experimental Botany, 2018, 69, 4633-4649.	4.8	25
9	Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating proteases. Journal of Experimental Botany, 2018, 69, 4505-4509.	4.8	20
10	Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Scientific Reports, 2017, 7, 3806.	3.3	46
11	Bioinformatics Tools for Exploring the SUMO Gene Network. Methods in Molecular Biology, 2016, 1450, 285-301.	0.9	3
12	SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Molecular Biology, 2016, 92, 143-159.	3.9	39
13	Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply. Genomics Data, 2016, 7, 256-258.	1.3	17
14	Arabidopsis Squalene Epoxidase 3 (SQE3) Complements SQE1 and Is Important for Embryo Development and Bulk Squalene Epoxidase Activity. Molecular Plant, 2015, 8, 1090-1102.	8.3	59
15	SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in <i>Arabidopsis thaliana</i> Plant and Cell Physiology, 2015, 56, 2297-2311.	3.1	44
16	RNA-Seq and Gene Network Analysis Uncover Activation of an ABA-Dependent Signalosome During the Cork Oak Root Response to Drought. Frontiers in Plant Science, 2015, 6, 1195.	3.6	30
17	Long-term globular adiponectin administration improves adipose tissue dysmetabolism in high-fat diet-fed Wistar rats. Archives of Physiology and Biochemistry, 2014, 120, 147-157.	2.1	14
18	A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genomics, 2014, 15, 371.	2.8	53

#	Article	IF	CITATIONS
19	Impact of carbon and phosphate starvation on growth and programmed cell death of maritime pine suspension cells. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 478-486.	2.1	5
20	Phenotypic analysis of the Arabidopsis heat stress response during germination and early seedling development. Plant Methods, 2014, 10, 7.	4.3	76
21	The <i>SUD1</i> Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in <i>Arabidopsis</i> Ä Â. Plant Cell, 2013, 25, 728-743.	6.6	78
22	A subcellular tug of war involving three <scp>MYB</scp> â€like proteins underlies a molecular antagonism in <i><scp>A</scp>ntirrhinum</i> flower asymmetry. Plant Journal, 2013, 75, 527-538.	5.7	96
23	SUMO, a heavyweight player in plant abiotic stress responses. Cellular and Molecular Life Sciences, 2012, 69, 3269-3283.	5.4	118
24	Understanding Heat Stress Tolerance of Suspended Cells in the Model Plant <i>Populus euphratica</i> ISRN Forestry, 2012, 2012, 1-5.	1.0	3
25	A Strategy for the Identification of New Abiotic Stress Determinants inArabidopsisUsing Web-Based Data Mining and Reverse Genetics. OMICS A Journal of Integrative Biology, 2011, 15, 935-947.	2.0	6
26	Analysis on the Role of Phenylpropanoid Metabolism in the <i>Pinus pinaster-Botrytis cinerea < i>Interaction. Journal of Phytopathology, 2010, 158, 641.</i>	1.0	4
27	Effect of salt on ROS homeostasis, lipid peroxidation and antioxidant mechanisms in Pinus pinaster suspension cells. Annals of Forest Science, 2009, 66, 211-211.	2.0	11
28	Establishment and characterization of Pinus pinaster suspension cell cultures. Plant Cell, Tissue and Organ Culture, 2008, 93, 115-121.	2.3	14
29	The Necrotroph Botrytis cinerea Induces a Non-Host Type II Resistance Mechanism in Pinus pinaster Suspension-Cultured Cells. Plant and Cell Physiology, 2008, 49, 386-395.	3.1	16
30	The Non-host Pathogen Botrytis cinerea Enhances Glucose Transport in Pinus pinaster Suspension-cultured Cells. Plant and Cell Physiology, 2006, 47, 290-298.	3.1	21
31	Salicylic acid up-regulates the expression of chloroplastic Cu, Zn-superoxide dismutase in needles of maritime pine (Pinus pinaster Ait.). Annals of Forest Science, 2004, 61, 847-850.	2.0	6
32	An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Molecular Biology Reporter, 2003, 21, 333-338.	1.8	86
33	Regulation of the Zinc Deficiency Response in the Legume Model Medicago truncatula. Frontiers in Plant Science, 0, 13, .	3.6	8