HerlÃender Azevedo

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6857016/publications.pdf
Version: 2024-02-01

| 33 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| papers |

```
SUMO, a heavyweight player in plant abiotic stress responses. Cellular and Molecular Life Sciences,
2012, 69, 3269-3283.
```

A subcellular tug of war involving three <scp>MYB</scp>â€like proteins underlies a molecular
A subcellular tug of war involving three <scp>MYB</scp>â€ike proteins underlies a molecular
antagonism in <i><scp>A</scp> ntirrhinum<|i> flower asymmetry. Plant Journal, 2013, 75, 527-538.
2.8

96

An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Molecular Biology Reporter, 2003, 21, 333-338.
$1.0 \quad 86$

The<i>SUD1</i>Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of
4 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in<i>Arabidopsis</i>Â Â. Plant Cell, 2013, 25, 78 728-743.
$5 \quad$ Phenotypic analysis of the Arabidopsis heat stress response during germination and early seedling
$1.9 \quad 76$ development. Plant Methods, 2014, 10, 7.

Arabidopsis Squalene Epoxidase 3 (SQE3) Complements SQE1 and Is Important for Embryo Development and Bulk Squalene Epoxidase Activity. Molecular Plant, 2015, 8, 1090-1102.
3.9

59

A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST
$7 \quad$ sequencing. BMC Genomics, 2014, 15, 371.
1.2

8 Rice F-bZIP transcription factors regulate the zinc deficiency response. Journal of Experimental Botany, 2020, 71, 3664-3677.
2.4

49

9 Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency

 response across land plants. Scientific Reports, 2017, 7, 3806.1.6

46
$9 \quad$ response across land plants. Scientific Reports, 2017, 7, 3806.

10 SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in<i>Arabidopsis thaliana<|i>. Plant and Cell Physiology, 2015, 56, 2297-2311.
11 SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses inArabidopsis thaliana. Plant Molecular Biology, 2016, 92, 143-159.
11 Arabidopsis thaliana. Plant Molecular Biology, 2016, 92, 143-159.
$2.0 \quad 39$

RNA-Seq and Gene Network Analysis Uncover Activation of an ABA-Dependent Signalosome During the
12 Cork Oak Root Response to Drought. Frontiers in Plant Science, 2015, 6, 1195.
1.7

30

13 Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream
of SIZ1 in plant development. Journal of Experimental Botany, 2018, 69, 4633-4649.
2.4

25

The Non-host Pathogen Botrytis cinerea Enhances Clucose Transport in Pinus pinaster
1.5

21
Suspension-cultured Cells. Plant and Cell Physiology, 2006, 47, 290-298.

Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating
proteases. Journal of Experimental Botany, 2018, 69, 4505-4509.
2.4

20

Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc

The Necrotroph Botrytis cinerea Induces a Non-Host Type II Resistance Mechanism in Pinus pinaster
19
20

Long-term globular adiponectin administration improves adipose tissue dysmetabolism in high-fat
1.0

14
diet-fed Wistar rats. Archives of Physiology and Biochemistry, 2014, 120, 147-157.

Effect of salt on ROS homeostasis, lipid peroxidation and antioxidant mechanisms in Pinus pinaster suspension cells. Annals of Forest Science, 2009, 66, 211-211.
Pervasive hybridization with local wild relatives in Western European grapevine varieties. Science
Advances, 2021, 7, eabi8584.

25	A Strategy for the Identification of New Abiotic Stress Determinants inArabidopsisUsing Web-Based Data Mining and Reverse Cenetics. OMICS A Journal of Integrative Biology, 2011, 15, 935-947.	1.0	6
26	Salicylic acid up-regulates the expression of chloroplastic Cu, Zn-superoxide dismutase in needles of maritime pine (Pinus pinaster Ait.). Annals of Forest Science, 2004, 61, 847-850.	0.8	6
27	Impact of carbon and phosphate starvation on growth and programmed cell death of maritime pine suspension cells. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 478-486.	0.9	5
28	Analysis on the Role of Phenylpropanoid Metabolism in the<i>Pinus pinaster-Botrytis cinerea</i>Interaction. Journal of Phytopathology, 2010, 158, 641.	0.5	4
29	Feasibility of applying shotgun metagenomic analyses to grapevine leaf, rhizosphere and soil microbiome characterisation. Australian Journal of Grape and Wine Research, 2021, 27, 519-526.	1.0	4
30	Bioinformatics Tools for Exploring the SUMO Gene Network. Methods in Molecular Biology, 2016, 1450, 285-301.	0.4	3
31	Understanding Heat Stress Tolerance of Suspended Cells in the Model Plant <i>Populus euphratica</i>. ISRN Forestry, 2012, 2012, 1-5.	1.0	3

growth is independently controlled by the SUMO E3 ligase SIZ1 and Hexokinase 1. MicroPublication

