Jiangping Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6856643/publications.pdf Version: 2024-02-01

Ιμνισρινό Χιι

#	Article	lF	CITATIONS
1	Shaping Block Copolymer Microparticles by Positively Charged Polymeric Nanoparticles. Macromolecular Rapid Communications, 2022, 43, e2200143.	2.0	1
2	Responsive Colloidal Polymer Particles with Ordered Mesostructures. Advanced Functional Materials, 2021, 31, 2008169.	7.8	45
3	A Monochloro Copper Phthalocyanine Memristor with Highâ€Temperature Resilience for Electronic Synapse Applications. Advanced Materials, 2021, 33, e2006201.	11.1	51
4	Self-Assembly of Polymer End-Tethered Gold Nanorods into Two-Dimensional Arrays with Tunable Tilt Structures. ACS Applied Materials & Interfaces, 2021, 13, 6566-6574.	4.0	18
5	Halogenâ€Bond Mediated 3D Confined Assembly of AB Diblock Copolymer and C Homopolymer Blends. Small, 2021, 17, e2007570.	5.2	9
6	Halogen Bonding: Halogenâ€Bond Mediated 3D Confined Assembly of AB Diblock Copolymer and C Homopolymer Blends (Small 18/2021). Small, 2021, 17, 2170082.	5.2	0
7	Electrostatic Control of the Three-Dimensional Confined Assembly of Charged Block Copolymers in Emulsion Droplets. Macromolecules, 2021, 54, 5728-5736.	2.2	18
8	Shaping Block Copolymer Microparticles by pH-Responsive Core-Cross-Linked Polymeric Nanoparticles. Langmuir, 2021, 37, 454-460.	1.6	5
9	Lightâ€responsive bilayered hydrogel for freshwater production from surface soil moisture. EcoMat, 2021, 3, e12144.	6.8	8
10	Temperature- and Solvent-Mediated Confined Assembly of Semicrystalline Chiral Block Copolymers in Evaporative Emulsion Droplets. Macromolecules, 2021, 54, 10712-10722.	2.2	6
11	Structure-Controlled Preparation of Multicompartment Micelles with Tunable Emission through Hydrodynamics-Dependent Self-Assembly in Microfluidic Chips. Langmuir, 2021, 37, 13099-13106.	1.6	2
12	Deformable Block Copolymer Microparticles by Controllable Localization of pH-Responsive Nanoparticles. Macromolecules, 2020, 53, 473-481.	2.2	32
13	Recent progress in responsive photonic crystals of block copolymers. Journal of Materials Chemistry C, 2020, 8, 16633-16647.	2.7	39
14	Responsive Photonic Crystal Microcapsules of Block Copolymers with Enhanced Monochromaticity. ACS Nano, 2020, 14, 16057-16064.	7.3	53
15	Symmetry breaking of Au nanospheres confined in 1D nanocylinders: exploring helical assembly by 3D transmission electron microscopy. Materials Chemistry Frontiers, 2020, 4, 3032-3039.	3.2	5
16	Flow hydrodynamics-dependent assembly of polymer-tethered gold nanoparticles in microfluidic channels. Materials Chemistry Frontiers, 2020, 4, 3240-3250.	3.2	4
17	Flow-Induced Micellar Morphological Transformation in Microfluidic Chips under Nonequilibrium State: From Aggregates to Spherical Micelles. Langmuir, 2020, 36, 5377-5384.	1.6	4
18	Kinetically Dependent Self-Assembly of Chiral Block Copolymers under 3D Confinement. Macromolecules, 2020, 53, 4214-4223.	2.2	28

JIANGPING XU

#	Article	IF	CITATIONS
19	Chain-length effect on binary superlattices of polymer-tethered nanoparticles. Materials Chemistry Frontiers, 2020, 4, 2089-2095.	3.2	13
20	Revealable photonic prints with oppositely responsive polymers for improved visual sensing. Journal of Materials Chemistry C, 2020, 8, 9286-9292.	2.7	15
21	Engineering the morphology of hydrogen-bonded comb-shaped supramolecular polymers: from solution self-assembly to confined assembly. Polymer Chemistry, 2020, 11, 4022-4028.	1.9	14
22	Tunable Photonic Microspheres of Comb‣ike Supramolecules. Small, 2020, 16, e2001315.	5.2	37
23	Soft Confined Assembly of Polymer-Tethered Inorganic Nanoparticles in Cylindrical Micelles. Macromolecules, 2020, 53, 4925-4931.	2.2	14
24	Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. Nanoscale, 2020, 12, 14957-14975.	2.8	39
25	Supramolecular Photonic Elastomers with Brilliant Structural Colors and Broadâ€ S pectrum Responsiveness. Advanced Functional Materials, 2020, 30, 2000008.	7.8	59
26	Kinetic Control of Length and Morphology of Segmented Polymeric Nanofibers in Microfluidic Chips. Langmuir, 2020, 36, 13364-13370.	1.6	4
27	Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation. ACS Applied Materials & amp; Interfaces, 2019, 11, 42734-42743.	4.0	15
28	Synergistic self-seeding in one-dimension: a route to patchy and block comicelles with uniform and controllable length. Chemical Science, 2019, 10, 2280-2284.	3.7	38
29	3D confined assembly of polymer-tethered gold nanoparticles into size-segregated structures. Materials Chemistry Frontiers, 2019, 3, 209-215.	3.2	18
30	Segmental Janus nanoparticles of polymer composites. Chemical Communications, 2019, 55, 8114-8117.	2.2	13
31	Shape-Anisotropic Diblock Copolymer Particles with Varied Internal Structures. Langmuir, 2019, 35, 3461-3469.	1.6	18
32	Responsive Block Copolymer Photonic Microspheres. Advanced Materials, 2018, 30, e1707344.	11.1	102
33	Competitive Self-Assembly Kinetics as a Route To Control the Morphology of Core-Crystalline Cylindrical Micelles. Journal of the American Chemical Society, 2018, 140, 2619-2628.	6.6	51
34	Regulating Block Copolymer Assembly Structures in Emulsion Droplets through Metal Ion Coordination. Langmuir, 2018, 34, 11495-11502.	1.6	27
35	Visualizing Nanoscale Coronal Segregation in Rodâ€Like Micelles Formed by Coâ€Assembly of Binary Block Copolymer Blends. Macromolecular Rapid Communications, 2018, 39, e1800397.	2.0	8
36	Regulation of Drug Release by Tuning Surface Textures of Biodegradable Polymer Microparticles. ACS Applied Materials & Interfaces, 2017, 9, 14391-14400.	4.0	68

JIANGPING XU

#	Article	IF	CITATIONS
37	Emulsion Solvent Evaporation-Induced Self-Assembly of Block Copolymers Containing pH-Sensitive Block. Langmuir, 2017, 33, 9889-9896.	1.6	49
38	Fabrication of convex lens-shaped polymer particles by tuning the interfacial interaction. Materials Chemistry Frontiers, 2017, 1, 507-511.	3.2	23
39	The generation of polymeric nano-bowls through 3D confined assembly and disassembly. Soft Matter, 2016, 12, 3683-3687.	1.2	31
40	Electric-Field-Assisted Assembly of Polymer-Tethered Gold Nanorods in Cylindrical Nanopores. ACS Nano, 2016, 10, 4954-4960.	7.3	61
41	Block Copolymer Capsules with Structureâ€Dependent Release Behavior. Angewandte Chemie - International Edition, 2016, 55, 14633-14637.	7.2	60
42	Block Copolymer Capsules with Structureâ€Đependent Release Behavior. Angewandte Chemie, 2016, 128, 14853-14857.	1.6	1
43	Photoguided Shape Deformation of Azobenzene-Containing Polymer Microparticles. Langmuir, 2015, 31, 13094-13100.	1.6	33
44	ABC Triblock Copolymer Particles with Tunable Shape and Internal Structure through 3D Confined Assembly. Macromolecules, 2015, 48, 2628-2636.	2.2	102
45	Additives Induced Structural Transformation of ABC Triblock Copolymer Particles. Langmuir, 2015, 31, 10975-10982.	1.6	51
46	Structural Transformation of Diblock Copolymer/Homopolymer Assemblies by Tuning Cylindrical Confinement and Interfacial Interactions. Langmuir, 2015, 31, 12354-12361.	1.6	39
47	Precise Localization of Inorganic Nanoparticles in Block Copolymer Micellar Aggregates: From Center to Interface. Macromolecules, 2015, 48, 256-263.	2.2	39
48	Assembly of Polymer-Tethered Gold Nanoparticles under Cylindrical Confinement. ACS Macro Letters, 2014, 3, 486-490.	2.3	52
49	Shear Flow Controlled Morphological Polydispersity of Amphiphilic ABA Triblock Copolymer Vesicles. Langmuir, 2013, 29, 15704-15710.	1.6	7
50	Chiral transferâ€dictated selfâ€assembly of chiral block copolymers. Aggregate, 0, , e122.	5.2	12