Gesuri Morales-Luna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6856523/publications.pdf

Version: 2024-02-01

1306789 1281420 15 118 11 7 citations g-index h-index papers 15 15 15 74 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Viability and fundamental limits of critical-angle refractometry of turbid colloids. Measurement Science and Technology, 2017, 28, 125203.	1.4	19
2	Experimental Test of Reflectivity Formulas for Turbid Colloids: Beyond the Fresnel Reflection Amplitudes. Journal of Physical Chemistry B, 2016, 120, 583-595.	1,2	17
3	Analytical modeling of optical reflectivity of random plasmonic nano-monolayers. Optics Express, 2018, 26, 12660.	1.7	15
4	Effective medium theory to the description of plasmonic resonances: Role of Au and Ti nanoparticles embedded in MoO3 thin films. Scientific Reports, 2020, 10, 5841.	1.6	14
5	On the effective refractive index of blood. Physica Scripta, 2016, 91, 015503.	1.2	13
6	Optical Coherent Reflection from a Confined Colloidal Film: Modeling and Experiment. Journal of Physical Chemistry B, 2018, 122, 8570-8581.	1.2	10
7	Plasmonic biosensor based on an effective medium theory as a simple tool to predict and analyze refractive index changes. Optics and Laser Technology, 2020, 131, 106332.	2.2	8
8	Enhancement of Light Absorption by Leaky Modes in a Random Plasmonic Metasurface. Journal of Physical Chemistry C, 2022, 126, 3163-3170.	1.5	5
9	Extinction Coefficient Modulation of MoO3 Films Doped with Plasmonic Nanoparticles: From an Effective Medium Theory Description. Nanomaterials, 2021, 11, 2050.	1.9	4
10	Optical sizing of nanoparticles in thin films of nonabsorbing nanocolloids. Applied Optics, 2019, 58, 5989.	0.9	4
11	An optical sensor combining surface plasmon resonance, light extinction, and near-critical angle reflection, for thin liquid film biochemical sensing. Optics and Lasers in Engineering, 2022, 158, 107137.	2.0	3
12	Sensitivity of optical reflectance to the deposition of plasmonic nanoparticles and limits of detection. Journal of Nanophotonics, 2016, 10, 026019.	0.4	2
13	Internal reflectance from a disordered monolayer of small gold nanoparticles on a glass substrate: Theory vs. experiment. Materials Today: Proceedings, 2019, 13, 404-412.	0.9	2
14	Optical reflectivity as an inspection tool for metallic nanoparticles deposited randomly on a flat substrate. , 2015, , .		1
15	Characterization of Rhodamine 110 adsorbed on carbon-based electrospun nanofibers decorated with gold nanoparticles by Raman spectroscopy and SERS. Materials Research Express, 2019, 6, 125012.	0.8	1