Patric J Jansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6856228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701

 $_{2}$ Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 702 Td (edition 1,430)

3	Thiosemicarbazones from the Old to New: Iron Chelators That Are More Than Just Ribonucleotide Reductase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 5271-5294.	2.9	338
4	Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1130-1144.	1.9	275
5	Antitumor Activity of Metal-Chelating Compound Dp44mT Is Mediated by Formation of a Redox-Active Copper Complex That Accumulates in Lysosomes. Cancer Research, 2011, 71, 5871-5880.	0.4	258
6	Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 702-717.	1.1	214
7	Novel Thiosemicarbazones of the ApT and DpT Series and Their Copper Complexes: Identification of Pronounced Redox Activity and Characterization of Their Antitumor Activity. Journal of Medicinal Chemistry, 2010, 53, 5759-5769.	2.9	205
8	Molecular Pharmacology of ABCG2 and Its Role in Chemoresistance. Molecular Pharmacology, 2013, 84, 655-669.	1.0	180
9	Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo. Journal of Medicinal Chemistry, 2012, 55, 7230-7244.	2.9	165
10	P-glycoprotein Mediates Drug Resistance via a Novel Mechanism Involving Lysosomal Sequestration. Journal of Biological Chemistry, 2013, 288, 31761-31771.	1.6	164
11	Zinc(II)–Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity. Journal of Medicinal Chemistry, 2016, 59, 4965-4984.	2.9	148
12	Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 770-784.	1.9	148
13	The old and new biochemistry of polyamines. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2053-2068.	1.1	145
14	The renaissance of polypharmacology in the development of anti-cancer therapeutics: Inhibition of the "Triad of Death―in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacological Research, 2015, 100, 255-260.	3.1	127
15	Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis, 2013, 34, 1943-1954.	1.3	117
16	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	1.9	111
17	The Iron Chelator, Deferasirox, as a Novel Strategy for Cancer Treatment: Oral Activity Against Human Lung Tumor Xenografts and Molecular Mechanism of Action. Molecular Pharmacology, 2013, 83, 179-190.	1.0	106
18	Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics, 2016, 8, 874-886.	1.0	105

#	Article	IF	CITATIONS
19	Di-2-pyridylketone 4,4-Dimethyl-3-thiosemicarbazone (Dp44mT) Overcomes Multidrug Resistance by a Novel Mechanism Involving the Hijacking of Lysosomal P-Glycoprotein (Pgp). Journal of Biological Chemistry, 2015, 290, 9588-9603.	1.6	103
20	Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 1-19.	3.3	88
21	The Metastasis Suppressor, N-myc Downstream-regulated Gene 1 (NDRG1), Inhibits Stress-induced Autophagy in Cancer Cells. Journal of Biological Chemistry, 2014, 289, 9692-9709.	1.6	83
22	Structure–Activity Relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-Acetylpyridine Thiosemicarbazones for Overcoming Pgp-Mediated Drug Resistance. Journal of Medicinal Chemistry, 2016, 59, 8601-8620.	2.9	82
23	The role of NDRG1 in the pathology and potential treatment of human cancers. Journal of Clinical Pathology, 2013, 66, 911-917.	1.0	72
24	A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death and Disease, 2016, 7, e2510-e2510.	2.7	72
25	Deferasirox (<scp>ICL670A</scp>) effectively inhibits oesophageal cancer growth <i>in vitro</i> and <i>in vivo</i> . British Journal of Pharmacology, 2013, 168, 1316-1328.	2.7	68
26	The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget, 2015, 6, 8851-8874.	0.8	64
27	Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. Journal of Inorganic Biochemistry, 2015, 152, 20-37.	1.5	64
28	Glucose modulation induces reactive oxygen species and increases <scp>P</scp> â€glycoproteinâ€mediated multidrug resistance to chemotherapeutics. British Journal of Pharmacology, 2015, 172, 2557-2572.	2.7	63
29	Molecular and Functional Alterations in a Mouse Cardiac Model of Friedreich Ataxia. American Journal of Pathology, 2013, 183, 745-757.	1.9	62
30	The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: An EPR study. Journal of Inorganic Biochemistry, 2010, 104, 1224-1228.	1.5	59
31	The Anticancer Agent Di-2-pyridylketone 4,4-Dimethyl-3-thiosemicarbazone (Dp44mT) Overcomes Prosurvival Autophagy by Two Mechanisms. Journal of Biological Chemistry, 2014, 289, 33568-33589.	1.6	59
32	Gene of the month: <i>BECN1</i> . Journal of Clinical Pathology, 2014, 67, 656-660.	1.0	57
33	Alkyl Substituted 2′-Benzoylpyridine Thiosemicarbazone Chelators with Potent and Selective Anti-Neoplastic Activity: Novel Ligands that Limit Methemoglobin Formation. Journal of Medicinal Chemistry, 2013, 56, 357-370.	2.9	56
34	Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacological Research, 2019, 139, 298-313.	3.1	55
35	Methemoglobin Formation by Triapine, Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and Other Anticancer Thiosemicarbazones: Identification of Novel Thiosemicarbazones and Therapeutics That Prevent This Effect. Molecular Pharmacology, 2012, 82, 105-114.	1.0	54
36	Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radical Biology and Medicine, 2016, 96, 432-445.	1.3	52

#	Article	IF	CITATIONS
37	Halogenated 2′-Benzoylpyridine Thiosemicarbazone (XBpT) Chelators with Potent and Selective Anti-Neoplastic Activity: Relationship to Intracellular Redox Activity. Journal of Medicinal Chemistry, 2011, 54, 6936-6948.	2.9	51
38	Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter. Journal of Biological Chemistry, 2016, 291, 3796-3820.	1.6	51
39	The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget, 2015, 6, 35522-35541.	0.8	43
40	Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: Mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2793-2813.	1.8	41
41	Novel Mechanism of Cytotoxicity for the Selective Selenosemicarbazone, 2-Acetylpyridine 4,4-Dimethyl-3-selenosemicarbazone (Ap44mSe): Lysosomal Membrane Permeabilization. Journal of Medicinal Chemistry, 2016, 59, 294-312.	2.9	39
42	Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochemistry International, 2018, 117, 35-48.	1.9	38
43	Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase. Biochemical Pharmacology, 2016, 109, 27-47.	2.0	36
44	Identification of differential phosphorylation and sub-cellular localization of the metastasis suppressor, NDRG1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2644-2663.	1.8	36
45	Tumor stressors induce two mechanisms of intracellular P-glycoprotein–mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. Journal of Biological Chemistry, 2018, 293, 3562-3587.	1.6	36
46	Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1665-1681.	1.9	34
47	A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous Nitric Oxide Cytotoxicity. Journal of Biological Chemistry, 2016, 291, 27042-27061.	1.6	32
48	Novel chelators based on adamantane-derived semicarbazones and hydrazones that target multiple hallmarks of Alzheimer's disease. Dalton Transactions, 2018, 47, 7190-7205.	1.6	30
49	Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants, 2021, 10, 1801.	2.2	29
50	The Novel Iron Chelator, 2-Pyridylcarboxaldehyde 2-Thiophenecarboxyl Hydrazone, Reduces Catecholamine-Mediated Myocardial Toxicity. Chemical Research in Toxicology, 2009, 22, 208-217.	1.7	27
51	The biochemical and molecular mechanisms involved in the role of tumor micro-environment stress in development of drug resistance. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1390-1397.	1.1	26
52	Oxidative Decomposition of Vitamin C in Drinking Water. Free Radical Research, 2004, 38, 855-860.	1.5	25
53	Unique targeting of androgenâ€dependent and â€independent AR signaling in prostate cancer to overcome androgen resistance. FASEB Journal, 2020, 34, 11511-11528.	0.2	25
54	The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacological Research, 2017, 119, 118-127.	3.1	24

#	Article	IF	CITATIONS
55	Measurement of Ascorbic Acid (Vitamin C) Induced Hydroxyl Radical Generation in Household Drinking Water. Free Radical Research, 2002, 36, 1271-1276.	1.5	23
56	Breaking the cycle: Targeting of NDRG1 to inhibit biâ€directional oncogenic crossâ€ŧalk between pancreatic cancer and stroma. FASEB Journal, 2021, 35, e21347.	0.2	23
57	Overcoming tamoxifen resistance in oestrogen receptorâ€positive breast cancer using the novel thiosemicarbazone antiâ€cancer agent, <scp>DpC</scp> . British Journal of Pharmacology, 2020, 177, 2365-2380.	2.7	21
58	Autophagy: A promising target for triple negative breast cancers. Pharmacological Research, 2022, 175, 106006.	3.1	20
59	Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation ofÂtheÂmetastasis suppressor NDRG1. Journal of Biological Chemistry, 2022, 298, 101608.	1.6	20
60	Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Current Medicinal Chemistry, 2019, 26, 302-322.	1.2	19
61	Thiosemicarbazones suppress expression of the c-Met oncogene by mechanisms involving lysosomal degradation and intracellular shedding. Journal of Biological Chemistry, 2020, 295, 481-503.	1.6	18
62	Making a case for albumin – a highly promising drug-delivery system. Future Medicinal Chemistry, 2015, 7, 553-556.	1.1	17
63	IRON METABOLISM AND AUTOPHAGY: A POORLY EXPLORED RELATIONSHIP THAT HAS IMPORTANT CONSEQUENCES FOR HEALTH AND DISEASE. Nagoya Journal of Medical Science, 2015, 77, 1-6.	0.6	17
64	Bonnie and Clyde: Vitamin C and iron are partners in crime in iron deficiency anaemia and its potential role in the elderly. Aging, 2016, 8, 1150-1152.	1.4	16
65	Regulation of autophagy and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165657.	1.8	16
66	The growing evidence for targeting P-glycoprotein in lysosomes to overcome resistance. Future Medicinal Chemistry, 2020, 12, 473-477.	1.1	16
67	NDRG1 suppresses basal and hypoxia-induced autophagy at both the initiation and degradation stages and sensitizes pancreatic cancer cells to lysosomal membrane permeabilization. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129625.	1.1	13
68	Role of ABCB1 in mediating chemoresistance of triple-negative breast cancers. Bioscience Reports, 2021, 41, .	1.1	13
69	Iron prevents ascorbic acid (vitamin C) induced hydrogen peroxide accumulation in copper contaminated drinking water. Free Radical Research, 2005, 39, 1233-1239.	1.5	11
70	Tumor-induced neoangiogenesis and receptor tyrosine kinases – Mechanisms and strategies for acquired resistance. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1217-1225.	1.1	9
71	Vitamin C (Ascorbic Acid) Induced Hydroxyl Radical Formation in Copper Contaminated Household Drinking Water: Role of Bicarbonate Concentration. Free Radical Research, 2003, 37, 901-905.	1.5	8
72	Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-chaperone. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165844.	1.8	8

#	Article	IF	CITATIONS
73	Vesicular ATP-binding cassette transporters in human disease: relevant aspects of their organization for future drug development. Future Drug Discovery, 2020, 2, .	0.8	8
74	The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130152.	1.1	8
75	Effects of iron on Vitamin C/copper-induced hydroxyl radical generation in bicarbonate-rich water. Free Radical Research, 2005, 39, 565-570.	1.5	7
76	During mitosis ZEB1 "switches―from being a chromatin-bound epithelial gene repressor, to become a microtubule-associated protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118673.	1.9	6
77	The redox-active, anti-cancer drug Dp44mT inhibits T-cell activation and CD25 through a copper-dependent mechanism. Redox Report, 2013, 18, 48-50.	1.4	3
78	Ascorbate and Tumor Cell Iron Metabolism: The Evolving Story and Its Link to Pathology. Antioxidants and Redox Signaling, 2020, 33, 816-838.	2.5	3
79	Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers, 2021, 13, 6152.	1.7	3
80	Targeting autophagy in antitumor agent design: furthering the â€~lysosomal love' strategy. Future Medicinal Chemistry, 2016, 8, 727-729.	1.1	0
81	NDRG1: A Novel Therapeutic Target against Metastatic Cancers. International Clinical Pathology Journal, 2015, 1, .	0.1	0