
Raca Todosijevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6855608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heuristic and exact reduction procedures to solve the discounted 0–1 knapsack problem. European Journal of Operational Research, 2023, 304, 901-911.	3.5	3
2	An efficient heuristic for a hub location routing problem. Optimization Letters, 2022, 16, 281-300. Mathematical formulations and solution methods for the uncapacitated somelymeth	0.9	7
3	xmlns:mml="http://www.w3.org/1998/Math/MathML" display= ^L inline" id="d1e11244" altimg="si240.svg"> <mml:mi>r</mml:mi> -allocation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e11249" altimg="si523.svg"><mml:mi>p</mml:mi>-hub maximal covering problem. Discrete</mml:math 	0.6	2
4	Optimization, 2022, 43, 100672. Solving the Capacitated Dispersion Problem with variable neighborhood search approaches: From basic to skewed VNS. Computers and Operations Research, 2022, 139, 105622.	2.4	8
5	Dispersion Problem Under Capacity and Cost Constraints: Multiple Neighborhood Tabu Search. Lecture Notes in Computer Science, 2022, , 108-122.	1.0	1
6	Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective. Sustainability, 2021, 13, 2895.	1.6	82
7	Efficient flow models for the uncapacitated multiple allocation p-hub median problem on non-triangular networks. Computers and Industrial Engineering, 2021, 162, 107723.	3.4	0
8	A comparative study of formulations for a cross-dock door assignment problem. Omega, 2020, 91, 102015.	3.6	33
9	A non-triangular hub location problem. Optimization Letters, 2020, 14, 1107-1126.	0.9	7
10	The selective traveling salesman problem with draft limits. Journal of Heuristics, 2020, 26, 339-352.	1.1	9
11	Less is more approach: basic variable neighborhood search for the obnoxious <i>p</i> â€median problem. International Transactions in Operational Research, 2020, 27, 480-493.	1.8	32
12	On convergence of scatter search and star paths with directional rounding for 0–1 mixed integer programs. Discrete Applied Mathematics, 2020, 308, 235-235.	0.5	0
13	The uncapacitated r â€allocation p â€hub center problem. International Transactions in Operational Research, 2020, , .	1.8	9
14	Modelling and solving the multi-quays berth allocation and crane assignment problem with availability constraints. Journal of Global Optimization, 2020, 78, 349-373.	1.1	18
15	Less is more: General variable neighborhood search for the capacitated modular hub location problem. Computers and Operations Research, 2019, 110, 101-115.	2.4	25
16	Probabilistic Tabu Search for the Cross-Docking Assignment Problem. European Journal of Operational Research, 2019, 277, 875-885.	3.5	24
17	Solving the capacitated clustering problem with variable neighborhood search. Annals of Operations Research, 2019, 272, 289-321.	2.6	26
18	Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design. European Journal of Operational Research, 2018, 268, 70-81.	3.5	16

RACA TODOSIJEVIC

#	Article	IF	CITATIONS
19	Variable Neighborhood Descent. , 2018, , 341-367.		31
20	A general variable neighborhood search variants for the travelling salesman problem with draft limits. Optimization Letters, 2017, 11, 1047-1056.	0.9	22
21	A general variable neighborhood search for solving the uncapacitated \$\$r\$\$ r -allocation \$\$p\$\$ p -hub median problem. Optimization Letters, 2017, 11, 1109-1121.	0.9	45
22	J-means and I-means for minimum sum-of-squares clustering on networks. Optimization Letters, 2017, 11, 359-376.	0.9	6
23	General variable neighborhood search for the uncapacitated single allocation p-hub center problem. Optimization Letters, 2017, 11, 377-388.	0.9	31
24	A general variable neighborhood search for the swap-body vehicle routing problem. Computers and Operations Research, 2017, 78, 468-479.	2.4	29
25	A basic variable neighborhood search heuristic for the uncapacitated multiple allocation p-hub center problem. Optimization Letters, 2017, 11, 313-327.	0.9	25
26	Sequential variable neighborhood descent variants: an empirical study on the traveling salesman problem. International Transactions in Operational Research, 2017, 24, 615-633.	1.8	56
27	Solving the maximum min-sum dispersion by alternating formulations of two different problems. European Journal of Operational Research, 2017, 260, 444-459.	3.5	23
28	Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems. Annals of Operations Research, 2017, 259, 191-216.	2.6	21
29	A general framework for nested variable neighborhood search. Electronic Notes in Discrete Mathematics, 2017, 58, 159-166.	0.4	4
30	The robust uncapacitated multiple allocation p -hub median problem. Computers and Industrial Engineering, 2017, 110, 322-332.	3.4	24
31	Mathematical programming based heuristics for the 0–1 MIP: a survey. Journal of Heuristics, 2017, 23, 165-206.	1.1	11
32	Less is more: Solving the Max-Mean diversity problem with variable neighborhood search. Information Sciences, 2017, 382-383, 179-200.	4.0	37
33	Variable neighborhood search: basics and variants. EURO Journal on Computational Optimization, 2017, 5, 423-454.	1.5	244
34	Local and Variable Neighborhood Searches for Solving the Capacitated Clustering Problem. Springer Optimization and Its Applications, 2017, , 33-55.	0.6	0
35	An Efficient Matheuristic for the Multicommodity Fixed-Charge Network Design Problem. IFAC-PapersOnLine, 2016, 49, 117-120.	0.5	5
36	Variable Neighborhood Descent for the Capacitated Clustering Problem. Lecture Notes in Computer Science, 2016, , 336-349.	1.0	2

RACA TODOSIJEVIC

#	ARTICLE	IF	CITATIONS
37	Nested general variable neighborhood search for the periodic maintenance problem. European Journal of Operational Research, 2016, 252, 385-396.	3.5	28
38	Adaptive general variable neighborhood search heuristics for solving the unit commitment problem. International Journal of Electrical Power and Energy Systems, 2016, 78, 873-883.	3.3	30
39	Less is more: Basic variable neighborhood search for minimum differential dispersion problem. Information Sciences, 2016, 326, 160-171.	4.0	80
40	Variable Neighborhood Descent. , 2016, , 1-27.		12
41	Variable and single neighbourhood diving for MIP feasibility. Yugoslav Journal of Operations Research, 2016, 26, 131-157.	0.5	13
42	Two level General variable neighborhood search for Attractive traveling salesman problem. Computers and Operations Research, 2014, 52, 341-348.	2.4	19
43	Variable neighborhood search for minimum sum-of-squares clustering on networks. European Journal of Operational Research, 2013, 230, 356-363.	3.5	22
44	An efficient General Variable Neighborhood Search for large Travelling Salesman Problem with Time Windows. Yugoslav Journal of Operations Research, 2013, 23, 19-30.	0.5	36
45	An efficient GVNS for solving Traveling Salesman Problem with Time Windows. Electronic Notes in Discrete Mathematics, 2012, 39, 83-90.	0.4	16
46	VNS based heuristic for solving the Unit Commitment problem. Electronic Notes in Discrete Mathematics, 2012, 39, 153-160.	0.4	6
47	Sum-of-squares clustering on networks. Yugoslav Journal of Operations Research, 2011, 21, 157-161.	0.5	13
48	A no-delay single machine scheduling problem to minimize total weighted early and late work. Optimization Letters, 0, , .	0.9	1