Mozhgan Yavari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6855604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Halide Choice on Formation of Lowâ€Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells. Energy and Environmental Materials, 2022, 5, 670-682.	7.3	9
2	A Multifaceted Ferrocene Interlayer for Highly Stable and Efficient Lithium Doped Spiroâ€OMeTADâ€based Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	32
3	Nanofibers modified through carbon and nitrogen coâ€doping and phase transformation for application in pseudocapacitors. International Journal of Energy Research, 2021, 45, 2343-2352.	2.2	1
4	A synergistic Cs ₂ CO ₃ ETL treatment to incorporate Cs cation into perovskite solar cells <i>via</i> two-step scalable fabrication. Journal of Materials Chemistry C, 2021, 9, 4367-4377.	2.7	17
5	Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@CeO2 core-shell. Journal of Alloys and Compounds, 2020, 819, 152949.	2.8	53
6	How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. Journal of Materials Chemistry A, 2019, 7, 23838-23853.	5.2	57
7	Carbon Nanoparticles in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702719.	10.2	74
8	Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800177.	10.2	106
9	Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy and Environmental Science, 2018, 11, 151-165.	15.6	586
10	Reducing Surface Recombination by a Poly(4-vinylpyridine) Interlayer in Perovskite Solar Cells with High Open-Circuit Voltage and Efficiency. ACS Omega, 2018, 3, 5038-5043.	1.6	38
11	Different Electrocatalytic Response Related to the Morphological Structure of TiO ₂ Nanomaterial: Hydroquinone as an Analytical Probe. Electroanalysis, 2017, 29, 231-237.	1.5	6
12	Influence of Nitrogen Doping on the Electrocatalytic Effect of TiO2Nanofibers. Journal of the Electrochemical Society, 2017, 164, H903-H907.	1.3	2
13	Carbon nanotubes and (4-((E)-(2-methyl-4-nitrophenylimino) methyl) benzene-1,2-diol) modified glassy carbon electrode as a new electrocatalyst for oxidation of levodopa. Catalysis Science and Technology, 2013, 3, 2634.	2.1	1