Rüdiger Schott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854984/publications.pdf Version: 2024-02-01

RÃ14 DICER SCHOTT

#	Article	IF	CITATIONS
1	A bright and fast source of coherent single photons. Nature Nanotechnology, 2021, 16, 399-403.	31.5	268
2	A gated quantum dot strongly coupled to an optical microcavity. Nature, 2019, 575, 622-627.	27.8	145
3	Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Physical Review B, 2017, 96, .	3.2	85
4	Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nature Nanotechnology, 2018, 13, 398-403.	31.5	85
5	Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide. Nano Letters, 2018, 18, 1801-1806.	9.1	49
6	Optical Detection of Single-Electron Tunneling into a Semiconductor Quantum Dot. Physical Review Letters, 2019, 122, 247403.	7.8	42
7	Nanomechanical single-photon routing. Optica, 2019, 6, 524.	9.3	41
8	Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode. Physical Review B, 2017, 96, .	3.2	29
9	Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots. APL Photonics, 2020, 5, 086101.	5.7	28
10	Experimental Reconstruction of the Few-Photon Nonlinear Scattering Matrix from a Single Quantum Dot in a Nanophotonic Waveguide. Physical Review Letters, 2021, 126, 023603.	7.8	27
11	Electro-optic routing of photons from a single quantum dot in photonic integrated circuits. Optics Express, 2017, 25, 33514.	3.4	21
12	Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface. Physical Review Applied, 2019, 11, .	3.8	20
13	Suppression of Surface-Related Loss in a Gated Semiconductor Microcavity. Physical Review Applied, 2021, 15, .	3.8	11
14	High-quality two-dimensional electron gas in undoped InSb quantum wells. Physical Review Research, 2022, 4, .	3.6	10
15	Grazing-incidence X-ray diffraction of single GaAs nanowires at locations defined by focused ion beams. Journal of Applied Crystallography, 2013, 46, 887-892.	4.5	9
16	Coherent transmission of superconducting carriers through a â^1⁄42 <i>Î1⁄4</i> m polar semiconductor. Superconductor Science and Technology, 2018, 31, 085007.	3.5	9
17	Onâ€Chip Nanomechanical Filtering of Quantumâ€Dot Singleâ€Photon Sources. Laser and Photonics Reviews, 2020, 14, 1900404.	8.7	9
18	Wafer-scale epitaxial modulation of quantum dot density. Nature Communications, 2022, 13, 1633.	12.8	9

Rüdiger Schott

#	Article	IF	CITATIONS
19	Integrated Whispering-Gallery-Mode Resonator for Solid-State Coherent Quantum Photonics. Nano Letters, 2021, 21, 8707-8714.	9.1	7
20	On-Demand Source of Dual-Rail Photon Pairs Based on Chiral Interaction in a Nanophotonic Waveguide. PRX Quantum, 2022, 3, .	9.2	7
21	Suspended Spotâ€Size Converters for Scalable Singleâ€Photon Devices. Advanced Quantum Technologies, 2020, 3, 1900076.	3.9	6
22	Tuning the Mode Splitting of a Semiconductor Microcavity with Uniaxial Stress. Physical Review Applied, 2021, 15, .	3.8	6
23	Focused ion beam supported growth of monocrystalline wurtzite InAs nanowires grown by molecular beam epitaxy. Journal of Crystal Growth, 2017, 470, 46-50.	1.5	5
24	Overcoming Ehrlich-Schwöbel barrier in (1â€⁻1â€⁻1)A GaAs molecular beam epitaxy. Journal of Crystal Growth, 2018, 481, 7-10.	1.5	5
25	Optical spin control and coherence properties of acceptor bound holes in strained GaAs. Physical Review B, 2021, 103, .	3.2	5
26	Lifetimes and Quantum Efficiencies of Quantum Dots Deterministically Positioned in Photonic rystal Waveguides. Advanced Quantum Technologies, 2020, 3, 2000026.	3.9	4
27	Quantum polyspectra for modeling and evaluating quantum transport measurements: A unifying approach to the strong and weak measurement regime. Physical Review Research, 2021, 3, .	3.6	4
28	A chiral one-dimensional atom using a quantum dot in an open microcavity. Npj Quantum Information, 2022, 8, .	6.7	4
29	Improving the Out-Coupling of a Metal-Metal Terahertz Frequency Quantum Cascade Laser Through Integration of a Hybrid Mode Section into the Waveguide. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 426-434.	2.2	3
30	Contrast of 83% in reflection measurements on a single quantum dot. Scientific Reports, 2019, 9, 8817.	3.3	2
31	Selfâ€Organized Growth of Quantum Dots and Quantum Wires by Combination of Focused Ion Beams and Molecular Beam Epitaxy. Physica Status Solidi (B): Basic Research, 2019, 256, 1800375.	1.5	2
32	Influence of molecular beam effusion cell quality on optical and electrical properties of quantum dots and quantum wells. Journal of Crystal Growth, 2020, 550, 125884.	1.5	2
33	Effect of electric current on the optical orientation of interface electrons in AlGaAs/GaAs heterostructures. Physical Review B, 2020, 102, .	3.2	1
34	Formation of tungsten carbide by focused ion beam process: A route to high magnetic field resilient patterned superconducting nanostructures. Applied Physics Letters, 2022, 120, 132601.	3.3	1
35	Metal-metal terahertz quantum cascade laser with hybrid mode section. , 2015, , .		0
36	On-chip nano-electro-mechanical switching of deterministic single photons. , 2019, , .		0

3

#	Article	IF	CITATIONS
37	Ultra-bright Source of Indistinguishable Single Photons. , 2020, , .		0