

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854879/publications.pdf Version: 2024-02-01

LIE HOU

#	Article	IF	CITATIONS
1	The principles for rationally designing H-SOFC anode active layer. Materials Research Bulletin, 2022, 150, 111769.	5.2	3
2	Advancing cathodic electrocatalysis <i>via</i> an <i>in situ</i> generated dense active interlayer based on CuO ₅ pyramid-structured Sm ₂ Ba _{1.33} Ce _{0.67} Cu ₃ O ₉ . Journal of Materials Chemistry A, 2022, 10, 15949-15959.	10.3	6
3	A novel inhibiting water adsorption strategy to enhance the cathode electrocatalytic ability. Journal of Alloys and Compounds, 2021, 876, 160205.	5.5	3
4	Pr ₂ BaNiMnO _{7â~'Î} double-layered Ruddlesden–Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2020, 8, 7704-7712.	10.3	84
5	Rationally structuring proton-conducting solid oxide fuel cell anode with Ni metal catalyst and porous skeleton. Ceramics International, 2020, 46, 24038-24044.	4.8	5
6	High performance Ca-containing La2-xCaxNiO4+Î′(0â‰ ¤ â‰ 0 .75) cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 23422-23432.	7.1	32
7	Cogeneration of ethylene and electricity in symmetrical protonic solid oxide fuel cells based on a La _{0.6} Sr _{0.4} Fe _{0.8} Nb _{0.1} Cu _{0.1} O _{3â^îr} electrode. Journal of Materials Chemistry A, 2020, 8, 25978-25985.	10.3	22
8	Rational design of an in-situ co-assembly nanocomposite cathode La0.5Sr1.5MnO4+δ-La0.5Sr0.5MnO3-δ for lower-temperature proton-conducting solid oxide fuel cells. Journal of Power Sources, 2020, 466, 228240.	7.8	31
9	A comparative study of the R-P phase Srn+1FenO3n+1 (n= 1, 2 and 3) cathodes for intermediate temperature solid oxide fuel cells. Ceramics International, 2020, 46, 19335-19342.	4.8	9
10	One-step synthesis of CuCo2O4-Sm0.2Ce0.8O1.9 nanofibers as high performance composite cathodes of intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 12577-12582.	7.1	11
11	Structural remodeling of Ni-based anodes for solid oxide fuel cells via static magnetic field. Scripta Materialia, 2020, 182, 86-89.	5.2	0
12	Ca-containing Ba0·95Ca0·05Co0·4Fe0·4ZrO·1Y0·1O3·Î´ cathode with high CO2-poisoning tolerance for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2020, 453, 227909.	7.8	35
13	Effects of substrate orientation and solution movement in chemical bath deposition on Zn(O,S) buffer layer and Cu(In,Ga)Se2 thin film solar cells. Nano Energy, 2019, 58, 427-436.	16.0	33
14	The effect of anode structure on the performance of NiO-BaZr0.1Ce0.7Y0.2O3-δ supported ceria-based solid oxide fuel cells. Ionics, 2019, 25, 3523-3529.	2.4	7
15	High performance BaCe0.5Fe0.5-xBixO3-δ as cobalt-free cathode for proton-conducting solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 790, 551-557.	5.5	15
16	A high-performance cobalt-free Ruddlesden-Popper phase cathode La1·2SrO·8NiO·6FeO·4O4+δ for low temperature proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 7531-7537.	7.1	59
17	A strategy for improving the sinterability and electrochemical properties of ceria-based LT-SOFCs using bismuth oxide additive. International Journal of Hydrogen Energy, 2019, 44, 5447-5453.	7.1	20
18	A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 10411-10420.	10.3	34

Jie Hou

#	Article	IF	CITATIONS
19	High-aluminum fly ash recycling for fabrication of cost-effective ceramic membrane supports. Journal of Alloys and Compounds, 2016, 683, 474-480.	5.5	77
20	High-performance Ba(Zr 0.1 Ce 0.7 Y 0.2)O 3â^îr´asymmetrical ceramic membrane with external short circuit for hydrogen separation. Journal of Alloys and Compounds, 2016, 660, 231-234.	5.5	30
21	Cost-effective utilization of mineral-based raw materials for preparation of porous mullite ceramic membranes via in-situ reaction method. Applied Clay Science, 2016, 120, 135-141.	5.2	39
22	A novel composite cathode Er0.4Bi1.6O3–Pr0.5Ba0.5MnO3â^`δ for ceria-bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. Journal of Power Sources, 2016, 301, 306-311.	7.8	30
23	Fabrication of (Sm, Ce)O2â ^{~^} δ interlayer for yttria-stabilized zirconia-based intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2015, 631, 255-260.	5.5	16
24	The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 2207-2215.	10.3	54
25	A new cobalt-free composite cathode Pr 0.6 Sr 0.4 Cu 0.2 Fe 0.8 O 3â~î^ -Ce 0.8 Sm 0.2 O 2â~î^ for proton-conducting solid oxide fuel cells. Electrochimica Acta, 2015, 178, 60-64.	5.2	26
26	High performance ceria–bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating. Journal of Materials Chemistry A, 2015, 3, 10219-10224.	10.3	44
27	Different ceria-based materials Gd0.1Ce0.9O2â^´Î´ and Sm0.075Nd0.075Ce0.85O2â^`δ for ceria–bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. Journal of Power Sources, 2015, 299, 32-39.	7.8	19
28	A new cobalt-free proton-blocking composite cathode La2NiO4+δ–LaNi0.6Fe0.4O3â^îδ for BaZr0.1Ce0.7Y0.2O3â^δ-based solid oxide fuel cells. Journal of Power Sources, 2014, 264, 67-75.	7.8	78