Kazunori Okano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854836/publications.pdf Version: 2024-02-01

KAZUNORI OKANO

#	Article	IF	CITATIONS
1	In Situ Guided Neurite Outgrowth by Femtosecond Laser Processing in a Microfluidic Device. , 2021, , .		1
2	Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers. Scientific Reports, 2021, 11, 1652.	3.3	8
3	miR-34a-5p might have an important role for inducing apoptosis by down-regulation of SNAI1 in apigenin-treated lung cancer cells. Molecular Biology Reports, 2021, 48, 2291-2297.	2.3	19
4	Focusing of Particles in a Microchannel with Laser Engraved Groove Arrays. Biosensors, 2021, 11, 263.	4.7	6
5	Mechanosensitive axon outgrowth mediated by L1-laminin clutch interface. Biophysical Journal, 2021, 120, 3566-3576.	0.5	12
6	Force measurement of plant cell utilizing atomic force microscopy. Plant Morphology, 2021, 33, 41-45.	0.1	1
7	Selective induction of targeted cell death and elimination by near-infrared femtosecond laser ablation. Biochemistry and Biophysics Reports, 2020, 24, 100818.	1.3	3
8	In situ measurement of cell stiffness of Arabidopsis roots growing on a glass micropillar support by atomic force microscopy. Plant Biotechnology, 2020, 37, 417-422.	1.0	4
9	High-speed micro-particle manipulation in a microfluidic chip by directional femtosecond laser impulse. Sensors and Actuators A: Physical, 2019, 297, 111566.	4.1	14
10	High-speed microparticle isolation unlimited by Poisson statistics. Lab on A Chip, 2019, 19, 2669-2677.	6.0	23
11	Targeted delivery of fluorogenic peptide aptamers into live microalgae by femtosecond laser photoporation at single-cell resolution. Scientific Reports, 2018, 8, 8271.	3.3	16
12	In situ patterning and controlling living cells by utilizing femtosecond laser. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 28, 1-28.	11.6	20
13	Metabolic variation of HeLa cells migrating on microfabricated cytophilic channels studied by the fluorescence lifetime of NADH. RSC Advances, 2014, 4, 44100-44104.	3.6	4
14	In situ laser micropatterning of proteins for dynamically arranging living cells. Lab on A Chip, 2013, 13, 4078.	6.0	18
15	Dynamic photopatterning of cellsin situby Q-switched neodymium-doped yttrium ortho-vanadate laser. Journal of Biomedical Optics, 2013, 19, 011012.	2.6	5
16	Laser-assisted control of protein adsorption for dynamically arranging viable cells. , 2013, , .		0
17	Morphological evaluation of cell differentiation after the isolation of single cells by a femtosecond laser-induced impulsive force. Biomedical Microdevices, 2011, 13, 117-122.	2.8	10
18	Induction of Cell–Cell Connections by Using in situ Laser Lithography on a Perfluoroalkyl oated Cultivation Platform. ChemBioChem, 2011, 12, 795-801.	2.6	20

KAZUNORI OKANO

#	Article	IF	CITATIONS
19	<i>In-situ</i> guidance of individual neuronal processes by wet femtosecond-laser processing of self-assembled monolayers. Applied Physics Letters, 2011, 99, 163701.	3.3	36
20	In situ observation of cell-detachment process initiated byÂfemtosecond laser-induced stress wave. Applied Physics A: Materials Science and Processing, 2010, 101, 127-131.	2.3	9
21	Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays. Applied Physics A: Materials Science and Processing, 2010, 101, 423-428.	2.3	10
22	Local stimulation of cultured myocyte cells by femtosecond laser-induced stress wave. Applied Physics A: Materials Science and Processing, 2010, 101, 597-600.	2.3	10
23	Micropatterning of perfluoroalkyl self-assembled monolayers for arraying proteins and cells on chips. Applied Surface Science, 2009, 255, 7647-7651.	6.1	18
24	Femtosecond laser modification of living neuronal network. Applied Physics A: Materials Science and Processing, 2008, 93, 57-63.	2.3	23
25	Array arrangement of living cells on self-assembled-monolayer pattern chip with femtosecond laser inducing mechanical force "micro tsunami". , 2008, , .		0
26	Viability evaluation of culture cells patterned by femtosecond laser-induced impulsive force. Proceedings of SPIE, 2008, , .	0.8	7
27	Signal Sequence and Keyword Trap in silico for Selection of Full-Length Human cDNAs Encoding Secretion or Membrane Proteins from Oligo-Capped cDNA Libraries. DNA Research, 2005, 12, 117-126.	3.4	44
28	Convenient Single-Nucleotide Polymorphism Typing from Whole Blood by Probe Extension and Bioluminescence Detection. Clinical Chemistry, 2004, 50, 1417-1420.	3.2	2
29	A gel-free SNP genotyping method: bioluminometric assay coupled with modified primer extension reactions (BAMPER) directly from double-stranded PCR products. Human Mutation, 2004, 24, 155-163.	2.5	19
30	Automated Bead Alignment Apparatus Using a Single Bead Capturing Technique for Fabrication of a Miniaturized Bead-Based DNA Probe Array. Analytical Chemistry, 2003, 75, 3250-3255.	6.5	30
31	Microchip Electrophoresis of Tagged Probes Incorporated with One-Colored ddNTP for Analyzing Single-Nucleotide Polymorphisms. Analytical Chemistry, 2003, 75, 3345-3351.	6.5	27
32	DNA probes on beads arrayed in a capillary, 'Bead-array', exhibited high hybridization performance. Nucleic Acids Research, 2002, 30, 87e-87.	14.5	42
33	Application of differential display to identify genes for lung cancer detection in peripheral blood. International Journal of Cancer, 2002, 100, 592-599.	5.1	17
34	On-chip culture system for observation of isolated individual cells. Lab on A Chip, 2001, 1, 50.	6.0	183
35	Miniaturized pyrosequencer for DNA analysis with capillaries to deliver deoxynucleotides. Electrophoresis, 2001, 22, 3497-3504.	2.4	34
36	Position-specific release of DNA from a chip by using photothermal denaturation. Sensors and Actuators B: Chemical, 2000, 64, 88-94.	7.8	8

Kazunori Okano

#	Article	IF	CITATIONS
37	Focal Extraction of Surface-Bound DNA from a Microchip Using Photo-Thermal Denaturation. BioTechniques, 2000, 28, 1006-1011.	1.8	28
38	Characteristics of selective polymerase chain reaction (PCR) using two-base anchored primers and improvement of its specificity. Electrophoresis, 1998, 19, 3071-3078.	2.4	15
39	Fragment walking for long DNA sequencing by using a library as small as 16 primers. Gene, 1996, 176, 231-235.	2.2	8
40	Selecting and amplifying one fragment from a DNA fragment mixture by polymerase chain reaction with a pair of selective primers. Electrophoresis, 1996, 17, 1833-1840.	2.4	5
41	Using microparticle labeling and counting for attomole-level detection in heterogeneous immunoassay. Analytical Biochemistry, 1992, 202, 120-125.	2.4	31