
Morteza Nazerian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854624/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal energy storage and mechanical performance of composites of rigid polyurethane foam and phase change material prepared by one-shot synthesis method. Journal of Polymer Research, 2022, 29, 1.	2.4	5
2	Adaptive harmony search algorithm for mechanical performance optimization of properties of particleboard from cotton stalk. Waste Management and Research, 2021, 39, 314-324.	3.9	2
3	Performance of ANN in Predicting Internal Bonding of Cement Particleboard Manufactured from Giant Reed and Bagasse. Drvna Industrija, 2021, 72, 255-271.	0.6	1
4	Modeling the Bending Strength of MDF Faced, Polyurethane Foam-Cored Sandwich Panels Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Forests, 2021, 12, 1514.	2.1	6
5	High strength papers impregnated with urea/melamine formaldehyde resin/nanosilica nanocomposite coatings: the effects of paper type, blend ratio and nano-content. Materials Today Communications, 2020, 25, 101300.	1.9	5
6	EVALUATION OF MECHANICAL AND FLAME RETARDANT PROPERTIES OF MEDIUM DENSITY FIBERBOARD USING ARTIFICIAL NEURAL NETWORK. Cerne, 2020, 26, 279-292.	0.9	2
7	Application of response surface methodology for evaluating particleboard properties made from cotton stalk particles. Wood Material Science and Engineering, 2018, 13, 73-80.	2.3	4
8	Silica (SiO2) Content on Mechanical Properties of Cement-Bonded Particleboard Manufactured from Lignocellulosic Materials. Drvna Industrija, 2018, 69, 317-328.	0.6	6
9	COMPARISON OF RESPONSE SURFACE METHODOLOGY (RSM) AND ARTIFICIAL NEURAL NETWORKS (ANN) TOWARDS EFFICIENT OPTIMIZATION OF FLEXURAL PROPERTIES OF GYPSUM-BONDED FIBERBOARDS. Cerne, 2018, 24, 35-47.	0.9	25
10	Bending Strength of Sandwich-Type Particleboard Manufactured from Giant Reed (Arundo donax). Forest Products Journal, 2015, 65, 292-300.	0.4	2
11	Cement-bonded particleboard with a mixture of wheat straw and poplar wood. Journal of Forestry Research, 2013, 24, 381-390.	3.6	17
12	The influence of additive content and particle size of bagasse on some properties of cement-bonded particleboard. Journal of the Indian Academy of Wood Science, 2013, 10, 86-94.	0.9	4
13	Gypsum-bonded particleboard manufactured from agricultural based material. Forest Science and Practice, 2013, 15, 325-331.	0.2	7
14	The lamination influence on properties of agro-based particleboard. Wood Material Science and Engineering, 2013, 8, 129-138.	2.3	4
15	Effects of wood species, particle sizes and dimensions of residue obtained from trimming of wood–cement composites on physical and mechanical properties of cement-bonded particleboard. Wood Material Science and Engineering, 2011, 6, 196-206.	2.3	17
16	The manufacture of particleboards using mixture of reed (surfaceÂlayer) and commercial species (middle layer). European Journal of Wood and Wood Products, 2011, 69, 341-344.	2.9	20
17	Influence of utilization ofÂbagasse in surface layer on bending strength of three-layer particleboard. European Journal of Wood and Wood Products, 2011, 69, 533-535.	2.9	14
18	The Influence of Wood Extractives and Additives on the Hydration Kinetics of Cement Paste and Cement-bonded Particleboard. Journal of Applied Sciences, 2011, 11, 2186-2192.	0.3	21

#	Article	IF	CITATIONS
19	Developing adaptive neuro-fuzzy inference system-based models to predict the bending strength of polyurethane foam-cored sandwich panels. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072110242.	1.1	0
20	Comparison of different modeling methods toward predictive capability evaluation of the bonding strength of wood laminated products. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892110530.	2.5	3