Nuno Mateus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854483/publications.pdf Version: 2024-02-01

	15466	37111
13,953	65	96
citations	h-index	g-index
332	332	11395
docs citations	times ranked	citing authors
	citations 332	13,953 65 citations h-index 332 332

#	Article	IF	CITATIONS
1	Interaction of Different Polyphenols with Bovine Serum Albumin (BSA) and Human Salivary α-Amylase (HSA) by Fluorescence Quenching. Journal of Agricultural and Food Chemistry, 2007, 55, 6726-6735.	2.4	451
2	Structural Features of Procyanidin Interactions with Salivary Proteins. Journal of Agricultural and Food Chemistry, 2001, 49, 940-945.	2.4	317
3	Bioavailability of anthocyanins and derivatives. Journal of Functional Foods, 2014, 7, 54-66.	1.6	292
4	Interplay between Anthocyanins and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2014, 62, 6898-6902.	2.4	250
5	Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. Journal of Agricultural and Food Chemistry, 2013, 61, 1525-1533.	2.4	197
6	Study of carbohydrate influence on protein–tannin aggregation by nephelometry. Food Chemistry, 2003, 81, 503-509.	4.2	190
7	Identification of Anthocyanin-Flavanol Pigments in Red Wines by NMR and Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2002, 50, 2110-2116.	2.4	183
8	A New Class of Blue Anthocyanin-Derived Pigments Isolated from Red Wines. Journal of Agricultural and Food Chemistry, 2003, 51, 1919-1923.	2.4	175
9	Antioxidant Properties of Prepared Blueberry (Vaccinium myrtillus) Extracts. Journal of Agricultural and Food Chemistry, 2005, 53, 6896-6902.	2.4	172
10	Wine Flavonoids in Health and Disease Prevention. Molecules, 2017, 22, 292.	1.7	167
11	Formation of pyranoanthocyanins in red wines: a new and diverse class of anthocyanin derivatives. Analytical and Bioanalytical Chemistry, 2011, 401, 1463-1473.	1.9	141
12	Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var.) Tj ETQq0 0 0 rg	BT /Qverlo	ck ₁ 0 Tf 50 3
13	Sensorial properties of red wine polyphenols: Astringency and bitterness. Critical Reviews in Food Science and Nutrition, 2017, 57, 937-948.	5.4	134
14	Occurrence of Anthocyanin-Derived Pigments in Red Wines. Journal of Agricultural and Food Chemistry, 2001, 49, 4836-4840.	2.4	131
15	Structural diversity of anthocyanin-derived pigments in port wines. Food Chemistry, 2002, 76, 335-342.	4.2	131

16	Absorption of anthocyanins through intestinal epithelial cells – Putative involvement of GLUT2. Molecular Nutrition and Food Research, 2009, 53, 1430-1437.	1.5	131
17	Reactivity of Human Salivary Proteins Families Toward Food Polyphenols. Journal of Agricultural and Food Chemistry, 2011, 59, 5535-5547.	2.4	128
18	Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food and Function, 2011, 2, 39-44.	2.1	124

#	Article	IF	CITATIONS
19	Influence of Wine Pectic Polysaccharides on the Interactions between Condensed Tannins and Salivary Proteins. Journal of Agricultural and Food Chemistry, 2006, 54, 8936-8944.	2.4	123
20	Quercetin Increases Oxidative Stress Resistance and Longevity inSaccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2007, 55, 2446-2451.	2.4	122
21	Procyanidins as Antioxidants and Tumor Cell Growth Modulators. Journal of Agricultural and Food Chemistry, 2006, 54, 2392-2397.	2.4	121
22	Evolution and Stability of Anthocyanin-Derived Pigments during Port Wine Aging. Journal of Agricultural and Food Chemistry, 2001, 49, 5217-5222.	2.4	119
23	Influence of the tannin structure on the disruption effect of carbohydrates on protein–tannin aggregates. Analytica Chimica Acta, 2004, 513, 135-140.	2.6	117
24	Inhibition of Î \pm -amylase activity by condensed tannins. Food Chemistry, 2011, 125, 665-672.	4.2	117
25	Understanding the Molecular Mechanism of Anthocyanin Binding to Pectin. Langmuir, 2014, 30, 8516-8527.	1.6	117
26	Protein/Polyphenol Interactions: Past and Present Contributions. Mechanisms of Astringency Perception. Current Organic Chemistry, 2012, 16, 724-746.	0.9	114
27	Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules, 2020, 25, 2590.	1.7	112
28	Anthocyanins. Plant Pigments and Beyond. Journal of Agricultural and Food Chemistry, 2014, 62, 6879-6884.	2.4	111
29	Nephelometric study of salivary protein-tannin aggregates. Journal of the Science of Food and Agriculture, 2002, 82, 113-119.	1.7	109
30	Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends in Food Science and Technology, 2019, 83, 211-224.	7.8	108
31	Development changes of anthocyanins inVitis vinifera grapes grown in the Douro Valley and concentration in respective wines. Journal of the Science of Food and Agriculture, 2002, 82, 1689-1695.	1.7	104
32	Flavonoid metabolites transport across a human BBB model. Food Chemistry, 2014, 149, 190-196.	4.2	104
33	Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cellular and Molecular Biology Letters, 2010, 15, 234-41.	2.7	103
34	Isolation and Structural Characterization of New Acylated Anthocyaninâ^'Vinylâ^'Flavanol Pigments Occurring in Aging Red Wines. Journal of Agricultural and Food Chemistry, 2003, 51, 277-282.	2.4	102
35	Effect of pomegranate (Punica granatum) juice intake on hepatic oxidative stress. European Journal of Nutrition, 2007, 46, 271-278.	1.8	102
36	Blueberry anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines. Phytotherapy Research, 2010, 24, 1862-1869.	2.8	98

#	Article	IF	CITATIONS
37	Carbohydrates Inhibit Salivary Proteins Precipitation by Condensed Tannins. Journal of Agricultural and Food Chemistry, 2012, 60, 3966-3972.	2.4	98
38	Anthocyanins and derivatives are more than flavylium cations. Tetrahedron, 2015, 71, 3107-3114.	1.0	95
39	Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chemical Reviews, 2022, 122, 1416-1481.	23.0	95
40	Optimization of Phlorotannins Extraction from Fucus vesiculosus and Evaluation of Their Potential to Prevent Metabolic Disorders. Marine Drugs, 2019, 17, 162.	2.2	93
41	Mechanistic Approach by Which Polysaccharides Inhibit α-Amylase/Procyanidin Aggregation. Journal of Agricultural and Food Chemistry, 2009, 57, 4352-4358.	2.4	89
42	Isolation and Structural Characterization of New Anthocyanin-Derived Yellow Pigments in Aged Red Wines. Journal of Agricultural and Food Chemistry, 2006, 54, 9598-9603.	2.4	88
43	Antioxidant and Biological Properties of Bioactive Phenolic Compounds from <i>Quercus suber</i> L Journal of Agricultural and Food Chemistry, 2009, 57, 11154-11160.	2.4	88
44	Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds. Antioxidants, 2020, 9, 998.	2.2	85
45	Analysis of phenolic compounds in cork from Quercus suber L. by HPLC–DAD/ESI–MS. Food Chemistry, 2011, 125, 1398-1405.	4.2	84
46	Pyranoanthocyanin Dimers: A New Family of Turquoise Blue Anthocyanin-Derived Pigments Found in Port Wine. Journal of Agricultural and Food Chemistry, 2010, 58, 5154-5159.	2.4	82
47	NMR structure characterization of a new vinylpyranoanthocyanin–catechin pigment (a portisin). Tetrahedron Letters, 2004, 45, 3455-3457.	0.7	81
48	Blackberry anthocyanins: β-Cyclodextrin fortification for thermal and gastrointestinal stabilization. Food Chemistry, 2018, 245, 426-431.	4.2	80
49	Multiresidue pesticides analysis in soils using modified <scp>Q</scp> u <scp>EC</scp> h <scp>ERS</scp> with disposable pipette extraction and dispersive solidâ€phase extraction. Journal of Separation Science, 2013, 36, 376-382.	1.3	77
50	The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydrate Polymers, 2017, 177, 77-85.	5.1	77
51	Reaction between Hydroxycinnamic Acids and Anthocyaninâ^'Pyruvic Acid Adducts Yielding New Portisins. Journal of Agricultural and Food Chemistry, 2007, 55, 6349-6356.	2.4	76
52	Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chemistry, 2013, 141, 2923-2933.	4.2	74
53	Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chemistry, 2010, 119, 518-523.	4.2	73
54	Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Scientific Reports, 2018, 8, 11341.	1.6	73

#	Article	IF	CITATIONS
55	Inhibition of Trypsin by Condensed Tannins and Wine. Journal of Agricultural and Food Chemistry, 2007, 55, 7596-7601.	2.4	72
56	A new approach on the gastric absorption of anthocyanins. Food and Function, 2012, 3, 508.	2.1	72
57	Evolution of Phenolic Composition of Red Wine during Vinification and Storage and Its Contribution to Wine Sensory Properties and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2011, 59, 6550-6557.	2.4	71
58	Color Properties of Four Cyanidinâ^'Pyruvic Acid Adducts. Journal of Agricultural and Food Chemistry, 2006, 54, 6894-6903.	2.4	69
59	Isolation and quantification of oligomeric pyranoanthocyanin-flavanol pigments from red wines by combination of column chromatographic techniques. Journal of Chromatography A, 2006, 1134, 215-225.	1.8	69
60	Strawberries from integrated pest management and organic farming: Phenolic composition and antioxidant properties. Food Chemistry, 2012, 134, 1926-1931.	4.2	69
61	Experimental and Theoretical Data on the Mechanism by Which Red Wine Anthocyanins Are Transported through a Human MKN-28 Gastric Cell Model. Journal of Agricultural and Food Chemistry, 2015, 63, 7685-7692.	2.4	69
62	Effect of flavonols on wine astringency and their interaction with human saliva. Food Chemistry, 2016, 209, 358-364.	4.2	69
63	Oxazaphospholidine-oxide as an Efficientortho-Directing Group for the Diastereoselective Deprotonation of Ferrocene. Organic Letters, 2006, 8, 215-218.	2.4	68
64	Influence of Anthocyanins, Derivative Pigments and Other Catechol and Pyrogallol-Type Phenolics on Breast Cancer Cell Proliferation. Journal of Agricultural and Food Chemistry, 2010, 58, 3785-3792.	2.4	68
65	Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs red wine. Food Chemistry, 2019, 276, 410-418.	4.2	67
66	Previous and recent advances in pyranoanthocyanins equilibria in aqueous solution. Dyes and Pigments, 2014, 100, 190-200.	2.0	66
67	Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. Journal of Agricultural and Food Chemistry, 2018, 66, 8814-8823.	2.4	65
68	Molecular binding between anthocyanins and pectic polysaccharides – Unveiling the role of pectic polysaccharides structure. Food Hydrocolloids, 2020, 102, 105625.	5.6	65
69	New Anthocyanin–Human Salivary Protein Complexes. Langmuir, 2015, 31, 8392-8401.	1.6	64
70	A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chemistry, 2006, 97, 689-695.	4.2	63
71	Interaction of different classes of salivary proteins with food tannins. Food Research International, 2012, 49, 807-813.	2.9	62
72	Structural characterization of inclusion complexes between cyanidin-3-O-glucoside and β-cyclodextrin. Carbohydrate Polymers, 2014, 102, 269-277.	5.1	61

#	Article	IF	CITATIONS
73	Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Critical Reviews in Food Science and Nutrition, 2021, 61, 1130-1151.	5.4	61
74	Involvement of the modulation of cancer cell redox status in the anti-tumoral effect of phenolic compounds. RSC Advances, 2015, 5, 1-9.	1.7	60
75	Study of the Interaction of Pancreatic Lipase with Procyanidins by Optical and Enzymatic Methods. Journal of Agricultural and Food Chemistry, 2010, 58, 11901-11906.	2.4	59
76	Role of Vinylcatechin in the Formation of Pyranomalvidin-3-glucosideâ^'(+)-Catechin. Journal of Agricultural and Food Chemistry, 2008, 56, 10980-10987.	2.4	58
77	Organochlorine Pesticide Residues in Strawberries from Integrated Pest Management and Organic Farming. Journal of Agricultural and Food Chemistry, 2011, 59, 7582-7591.	2.4	58
78	Determination of Pesticides in Fruit and Fruit Juices by Chromatographic Methods. An Overview. Journal of Chromatographic Science, 2011, 49, 715-730.	0.7	58
79	Chemical transformations of anthocyanins yielding a variety of colours (Review). Environmental Chemistry Letters, 2006, 4, 175-183.	8.3	57
80	Anti-proliferative effects of quercetin and catechin metabolites. Food and Function, 2014, 5, 797.	2.1	57
81	Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine. Analytica Chimica Acta, 2006, 563, 2-9.	2.6	56
82	Mechanisms of Tannin-Induced Trypsin Inhibition: A Molecular Approach. Langmuir, 2011, 27, 13122-13129.	1.6	56
83	Structural Features of Copigmentation of Oenin with Different Polyphenol Copigments. Journal of Agricultural and Food Chemistry, 2013, 61, 6942-6948.	2.4	56
84	Multiple-approach studies to assess anthocyanin bioavailability. Phytochemistry Reviews, 2015, 14, 899-919.	3.1	55
85	Oxovitisins: A New Class of Neutral Pyranone-anthocyanin Derivatives in Red Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 8814-8819.	2.4	54
86	Spectral Features and Stability of Oligomeric Pyranoanthocyanin-flavanol Pigments Isolated from Red Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 9249-9258.	2.4	53
87	Flavanol–anthocyanin pigments in corn: NMR characterisation and presence in different purple corn varieties. Journal of Food Composition and Analysis, 2008, 21, 521-526.	1.9	52
88	New Family of Bluish Pyranoanthocyanins. Journal of Biomedicine and Biotechnology, 2004, 2004, 2004, 299-305.	3.0	51
89	Inhibition of Pancreatic Elastase by Polyphenolic Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 10668-10676.	2.4	51
90	Effect of cyclodextrins on the thermodynamic and kinetic properties of cyanidin-3-O-glucoside. Food Research International, 2013, 51, 748-755.	2.9	51

#	Article	IF	CITATIONS
91	Synthesis and catalytic applications of new chiral ferrocenyl P,O ligands. Journal of Organometallic Chemistry, 2006, 691, 2297-2310.	0.8	50
92	On the bioavailability of flavanols and anthocyanins: Flavanol–anthocyanin dimers. Food Chemistry, 2012, 135, 812-818.	4.2	50
93	A study of anthocyanin self-association by NMR spectroscopy. New Journal of Chemistry, 2015, 39, 2602-2611.	1.4	50
94	Application of flow nephelometry to the analysis of the influence of carbohydrates on protein–tannin interactions. Journal of the Science of Food and Agriculture, 2006, 86, 891-896.	1.7	48
95	Antioxidant Features of Red Wine Pyranoanthocyanins: Experimental and Theoretical Approaches. Journal of Agricultural and Food Chemistry, 2014, 62, 7002-7009.	2.4	48
96	Anthocyanins as Antidiabetic Agents—In Vitro and In Silico Approaches of Preventive and Therapeutic Effects. Molecules, 2020, 25, 3813.	1.7	48
97	Equilibrium Forms of Vitisin B Pigments in an Aqueous System Studied by NMR and Visible Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 11352-11358.	1.2	45
98	Biological Relevance of the Interaction between Procyanidins and Trypsin: A Multitechnique Approach. Journal of Agricultural and Food Chemistry, 2010, 58, 11924-11931.	2.4	45
99	Enzymatic synthesis, structural characterization and antioxidant capacity assessment of a new lipophilic malvidin-3-glucoside–oleic acid conjugate. Food and Function, 2016, 7, 2754-2762.	2.1	45
100	Wine industry by-product: Full polyphenolic characterization of grape stalks. Food Chemistry, 2018, 268, 110-117.	4.2	45
101	Impact of grape pectic polysaccharides on anthocyanins thermostability. Carbohydrate Polymers, 2020, 239, 116240.	5.1	45
102	The fate of flavanol–anthocyanin adducts in wines: Study of their putative reaction patterns in the presence of acetaldehyde. Food Chemistry, 2010, 121, 1129-1138.	4.2	44
103	The phenolic chemistry and spectrochemistry of red sweet wine-making and oak-aging. Food Chemistry, 2014, 152, 522-530.	4.2	44
104	Anthocyanin effects on microglia M1/M2 phenotype: Consequence on neuronal fractalkine expression. Behavioural Brain Research, 2016, 305, 223-228.	1.2	44
105	Antioxidant and antiproliferative properties of 3-deoxyanthocyanidins. Food Chemistry, 2016, 192, 142-148.	4.2	44
106	Flow nephelometric analysis of protein–tannin interactions. Analytica Chimica Acta, 2004, 513, 97-101.	2.6	43
107	Influence of Carbohydrates on the Interaction of Procyanidin B3 with Trypsin. Journal of Agricultural and Food Chemistry, 2011, 59, 11794-11802.	2.4	43
108	Analysis of pesticide residues in strawberries and soils by GC-MS/MS, LC-MS/MS and two-dimensional GC-time-of-flight MS comparing organic and integrated pest management farming. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 262-270.	1.1	43

#	Article	IF	CITATIONS
109	Study of human salivary proline-rich proteins interaction with food tannins. Food Chemistry, 2018, 243, 175-185.	4.2	43
110	Inhibitory effect of vinegars on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork. Meat Science, 2020, 167, 108083.	2.7	43
111	A review of the current knowledge of red wine colour Oeno One, 2017, 51, .	0.7	43
112	Malvidin 3-Glucoside–Fatty Acid Conjugates: From Hydrophilic toward Novel Lipophilic Derivatives. Journal of Agricultural and Food Chemistry, 2017, 65, 6513-6518.	2.4	42
113	GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Scientific Reports, 2019, 9, 789.	1.6	42
114	Thermodynamic and Kinetic Properties of a Red Wine Pigment: Catechin-(4,8)-malvidin-3- <i>O</i> -glucoside. Journal of Physical Chemistry B, 2010, 114, 13487-13496.	1.2	41
115	Screening of Anthocyanins and Anthocyanin-Derived Pigments in Red Wine Grape Pomace Using LC-DAD/MS and MALDI-TOF Techniques. Journal of Agricultural and Food Chemistry, 2015, 63, 7636-7644.	2.4	41
116	First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins. Food Chemistry, 2017, 228, 574-581.	4.2	41
117	Structural Characterization of New Malvidin 3-Glucosideâ~'Catechin Aryl/Alkyl-Linked Pigments. Journal of Agricultural and Food Chemistry, 2004, 52, 5519-5526.	2.4	40
118	Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives. Food Chemistry, 2015, 174, 480-486.	4.2	40
119	Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. Journal of Functional Foods, 2016, 24, 373-381.	1.6	40
120	Bioactive Peptides and Dietary Polyphenols: Two Sides of the Same Coin. Molecules, 2020, 25, 3443.	1.7	40
121	Preliminary Study of Oaklins, a New Class of Brick-Red Catechinpyrylium Pigments Resulting from the Reaction between Catechin and Wood Aldehydes. Journal of Agricultural and Food Chemistry, 2005, 53, 9249-9256.	2.4	39
122	Understanding the Binding of Procyanidins to Pancreatic Elastase by Experimental and Computational Methods. Biochemistry, 2010, 49, 5097-5108.	1.2	39
123	Establishment of the Chemical Equilibria of Different Types of Pyranoanthocyanins in Aqueous Solutions: Evidence for the Formation of Aggregation in Pyranomalvidin-3- <i>O</i> -coumaroylglucoside-(+)-catechin. Journal of Physical Chemistry B, 2010, 114, 13232-13240.	1.2	39
124	Effect of Condensed Tannins Addition on the Astringency of Red Wines. Chemical Senses, 2012, 37, 191-198.	1.1	39
125	Flavonoid transport across blood-brain barrier: Implication for their direct neuroprotective actions. Nutrition and Aging (Amsterdam, Netherlands), 2012, 1, 89-97.	0.3	39
126	In Vivo Interactions between Procyanidins and Human Saliva Proteins: Effect of Repeated Exposures to Procyanidins Solution. Journal of Agricultural and Food Chemistry, 2014, 62, 9562-9568.	2.4	39

#	Article	IF	CITATIONS
127	Effect of Myricetin, Pyrogallol, and Phloroglucinol on Yeast Resistance to Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-10.	1.9	38
128	Recent advances on dietary polyphenol's potential roles in Celiac Disease. Trends in Food Science and Technology, 2021, 107, 213-225.	7.8	38
129	Influence of the addition of grape seed procyanidins to Port wines in the resulting reactivity with human salivary proteins. Food Chemistry, 2004, 84, 195-200.	4.2	37
130	Bioavailability studies and anticancer properties of malvidin based anthocyanins, pyranoanthocyanins and non-oxonium derivatives. Food and Function, 2016, 7, 2462-2468.	2.1	37
131	Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation Transfer Difference (STD)-NMR. Food Chemistry, 2017, 228, 427-434.	4.2	37
132	Improvement of the Color Stability of Cyanidin-3-glucoside by Fatty Acid Enzymatic Acylation. Journal of Agricultural and Food Chemistry, 2018, 66, 10003-10010.	2.4	37
133	Selective enzymatic lipophilization of anthocyanin glucosides from blackcurrant (Ribes nigrum L.) skin extract and characterization of esterified anthocyanins. Food Chemistry, 2018, 266, 415-419.	4.2	37
134	The development and optimization of a modified single-drop microextraction method for organochlorine pesticides determination by gas chromatography-tandem mass spectrometry. Mikrochimica Acta, 2012, 178, 195-202.	2.5	36
135	Rapid Screening and Identification of New Soluble Tannin–Salivary Protein Aggregates in Saliva by Mass Spectrometry (MALDI-TOF-TOF and FIA-ESI-MS). Langmuir, 2014, 30, 8528-8537.	1.6	36
136	Pharmacokinetics of blackberry anthocyanins consumed with or without ethanol: A randomized and crossover trial. Molecular Nutrition and Food Research, 2016, 60, 2319-2330.	1.5	36
137	Molecular Interaction Between Salivary Proteins and Food Tannins. Journal of Agricultural and Food Chemistry, 2017, 65, 6415-6424.	2.4	36
138	Infusions and decoctions of dehydrated fruits of Actinidia arguta and Actinidia deliciosa: Bioactivity, radical scavenging activity and effects on cells viability. Food Chemistry, 2019, 289, 625-634.	4.2	36
139	Formation of new anthocyanin-alkyl/aryl-flavanol pigments in model solutions. Analytica Chimica Acta, 2004, 513, 215-221.	2.6	35
140	Do white grapes really exist?. Food Research International, 2015, 69, 21-25.	2.9	35
141	Proanthocyanidin screening by LC–ESI-MS of Portuguese red wines made with teinturier grapes. Food Chemistry, 2016, 190, 300-307.	4.2	35
142	Brown Algae Phlorotannins: A Marine Alternative to Break the Oxidative Stress, Inflammation and Cancer Network. Foods, 2021, 10, 1478.	1.9	35
143	Influence of the degree of polymerisation in the ability of catechins to act as anthocyanin copigments. European Food Research and Technology, 2008, 227, 83-92.	1.6	34
144	Structural characterization of a A-type linked trimeric anthocyanin derived pigment occurring in a young Port wine. Food Chemistry, 2013, 141, 1987-1996.	4.2	34

#	Article	IF	CITATIONS
145	Migration of phenolic compounds from different cork stoppers to wine model solutions: antioxidant and biological relevance. European Food Research and Technology, 2014, 239, 951-960.	1.6	34
146	The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet. Journal of Nutritional Biochemistry, 2015, 26, 1166-1173.	1.9	34
147	Synthesis of a new catechin-pyrylium derived pigment. Tetrahedron Letters, 2004, 45, 9349-9352.	0.7	33
148	Structural and chromatic characterization of a new Malvidin 3-glucoside–vanillyl–catechin pigment. Food Chemistry, 2007, 102, 1344-1351.	4.2	33
149	Impact of a pectic polysaccharide on oenin copigmentation mechanism. Food Chemistry, 2016, 209, 17-26.	4.2	33
150	Purple-fleshed sweet potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chemistry, 2019, 288, 386-394.	4.2	33
151	Isolation and structural characterization of new anthocyanin-alkyl-catechin pigments. Food Chemistry, 2005, 90, 81-87.	4.2	32
152	Phlorotannins from Fucus vesiculosus: Modulation of Inflammatory Response by Blocking NF-κB Signaling Pathway. International Journal of Molecular Sciences, 2020, 21, 6897.	1.8	32
153	In vitro gastrointestinal absorption of red wine anthocyanins – Impact of structural complexity and phase II metabolization. Food Chemistry, 2020, 317, 126398.	4.2	32
154	Influence of a Flavan-3-ol Substituent on the Affinity of Anthocyanins (Pigments) toward Vinylcatechin Dimers and Proanthocyanidins (Copigments). Journal of Physical Chemistry B, 2012, 116, 14089-14099.	1.2	31
155	Fluorescence Approach for Measuring Anthocyanins and Derived Pigments in Red Wine. Journal of Agricultural and Food Chemistry, 2013, 61, 10156-10162.	2.4	31
156	Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes. Journal of Agricultural and Food Chemistry, 2016, 64, 7823-7828.	2.4	31
157	Gemcitabine anti-proliferative activity significantly enhanced upon conjugation with cell-penetrating peptides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2898-2901.	1.0	31
158	Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocolloids, 2022, 127, 107501.	5.6	31
159	Quercetin Protects Saccharomyces cerevisiae against Oxidative Stress by Inducing Trehalose Biosynthesis and the Cell Wall Integrity Pathway. PLoS ONE, 2012, 7, e45494.	1.1	30
160	Human saliva protein profile: Influence of food ingestion. Food Research International, 2014, 64, 508-513.	2.9	30
161	Enzymatic Hemisynthesis of Metabolites and Conjugates of Anthocyanins. Journal of Agricultural and Food Chemistry, 2009, 57, 735-745.	2.4	29
162	A novel synthetic pathway to vitisin B compounds. Tetrahedron Letters, 2009, 50, 3933-3935.	0.7	28

#	Article	IF	CITATIONS
163	Chemical Behavior of Methylpyranomalvidin-3- <i>O</i> -glucoside in Aqueous Solution Studied by NMR and UVâ^'Visible Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 1538-1545.	1.2	28
164	Gastrointestinal absorption, antiproliferative and anti-inflammatory effect of the major carotenoids of Gardenia jasminoides Ellis on cancer cells. Food and Function, 2017, 8, 1672-1679.	2.1	28
165	Impact of Phlorotannin Extracts from Fucus vesiculosus on Human Gut Microbiota. Marine Drugs, 2021, 19, 375.	2.2	28
166	Modulation of MPP+uptake by procyanidins in Caco-2 cells: Involvement of oxidation/reduction reactions. FEBS Letters, 2006, 580, 155-160.	1.3	27
167	Effect of malvidin-3-glucoside and epicatechin interaction on their ability to interact with salivary proline-rich proteins. Food Chemistry, 2019, 276, 33-42.	4.2	26
168	Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. International Journal of Molecular Sciences, 2020, 21, 7464.	1.8	25
169	The effect of pectic polysaccharides from grape skins on salivary protein – procyanidin interactions. Carbohydrate Polymers, 2020, 236, 116044.	5.1	25
170	Pesticide residues in Portuguese strawberries grown in 2009–2010 using integrated pest management and organic farming. Environmental Science and Pollution Research, 2012, 19, 4184-4192.	2.7	24
171	Anthocyanins and human health: How gastric absorption may influence acute human physiology. Nutrition and Aging (Amsterdam, Netherlands), 2014, 2, 1-14.	0.3	24
172	Grape anthocyanin oligomerization: A putative mechanism for red color stabilization?. Phytochemistry, 2014, 105, 178-185.	1.4	24
173	Interaction study between wheat-derived peptides and procyanidin B3 by mass spectrometry. Food Chemistry, 2016, 194, 1304-1312.	4.2	24
174	Interaction between Ellagitannins and Salivary Proline-Rich Proteins. Journal of Agricultural and Food Chemistry, 2019, 67, 9579-9590.	2.4	24
175	Contribution and importance of wine spirit to the port wine final quality-initial approach. Journal of the Science of Food and Agriculture, 2005, 85, 1091-1097.	1.7	23
176	Vinylcatechin Dimers Are Much Better Copigments for Anthocyanins than Catechin Dimer Procyanidin B3. Journal of Agricultural and Food Chemistry, 2010, 58, 3159-3166.	2.4	23
177	First chemical synthesis report of an anthocyanin metabolite with in vivo occurrence: cyanidin-4′-O-methyl-3-glucoside. Tetrahedron Letters, 2013, 54, 2865-2869.	0.7	23
178	Wine-Inspired Chemistry: Anthocyanin Transformations for a Portfolio of Natural Colors. Synlett, 2017, 28, 898-906.	1.0	23
179	Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations. Journal of Agricultural and Food Chemistry, 2017, 65, 6434-6441.	2.4	23
180	The effect of anthocyanins from red wine and blackberry on the integrity of a keratinocyte model using ECIS. Food and Function, 2017, 8, 3989-3998.	2.1	23

#	Article	IF	CITATIONS
181	Application of LC–MS and tristimulus colorimetry to assess the ageing aptitude of Syrah wine in the Condado de Huelva D.O. (Spain), a typical warm climate region. Analytica Chimica Acta, 2012, 732, 162-171.	2.6	22
182	Network of carboxypyranomalvidin-3-O-glucoside (vitisin A) equilibrium forms in aqueous solution. Tetrahedron Letters, 2013, 54, 5106-5110.	0.7	22
183	Characterization and Modulation of Glucose Uptake in a Human Blood–Brain Barrier Model. Journal of Membrane Biology, 2013, 246, 669-677.	1.0	22
184	The interaction between tannins and gliadin derived peptides in a celiac disease perspective. RSC Advances, 2015, 5, 32151-32158.	1.7	22
185	Synthesis and equilibrium multistate of new pyrano-3-deoxyanthocyanin-type pigments in aqueous solutions. Tetrahedron, 2017, 73, 6021-6030.	1.0	22
186	Anthocyanin-Related Pigments: Natural Allies for Skin Health Maintenance and Protection. Antioxidants, 2021, 10, 1038.	2.2	22
187	Effect of chronic consumption of blackberry extract on high-fat induced obesity in rats and its correlation with metabolic and brain outcomes. Food and Function, 2016, 7, 127-139.	2.1	21
188	Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation. Journal of Agricultural and Food Chemistry, 2020, 68, 2955-2963.	2.4	21
189	Modulation of MPP+ uptake by tea and some of its components in Caco-2 cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 372, 147-152.	1.4	20
190	Interaction between red wine procyanidins and salivary proteins: effect of stomach digestion on the resulting complexes. RSC Advances, 2015, 5, 12664-12670.	1.7	20
191	Oral interactions between a green tea flavanol extract and red wine anthocyanin extract using a new cell-based model: insights on the effect of different oral epithelia. Scientific Reports, 2020, 10, 12638.	1.6	20
192	Antitumor Activity of Fucus vesiculosus-Derived Phlorotannins through Activation of Apoptotic Signals in Gastric and Colorectal Tumor Cell Lines. International Journal of Molecular Sciences, 2021, 22, 7604.	1.8	20
193	Synthesis of a New (+)-Catechin-Derived Compound: 8-Vinylcatechin. Letters in Organic Chemistry, 2008, 5, 530-536.	0.2	20
194	Screening of Portisins (Vinylpyranoanthocyanin Pigments) in Port Wine by LC/DAD-MS. Food Science and Technology International, 2005, 11, 353-358.	1.1	19
195	Endoscopic third ventriculostomy in the management of hydrocephalus: Outcome analysis of 168 consecutive procedures. Clinical Neurology and Neurosurgery, 2014, 126, 130-136.	0.6	19
196	Controversial association between polycystic ovary syndrome and breast cancer. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2019, 243, 125-132.	0.5	19
197	A multi-spectroscopic study on the interaction of food polyphenols with a bioactive gluten peptide: From chemistry to biological implications. Food Chemistry, 2019, 299, 125051.	4.2	19
198	The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients, 2021, 13, 4495.	1.7	19

#	Article	IF	CITATIONS
199	Grape pectic polysaccharides stabilization of anthocyanins red colour: Mechanistic insights. Carbohydrate Polymers, 2021, 255, 117432.	5.1	18
200	The Role of Nutraceutical Containing Polyphenols in Diabetes Prevention. Metabolites, 2022, 12, 184.	1.3	18
201	Anthocyanins as Food Colorants. , 2008, , 284-304.		17
202	Anti-tumoral activity of imidazoquines, a new class of antimalarials derived from primaquine. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6914-6917.	1.0	17
203	Analysing organochlorine pesticides in strawberry jams using GC-ECD, GC-MS/MS and QuEChERS sample preparation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1074-1084.	1.1	17
204	Influence of the structural features of amino-based pyranoanthocyanins on their acid-base equilibria in aqueous solutions. Dyes and Pigments, 2017, 141, 479-486.	2.0	17
205	Pharmacokinetics of table and Port red wine anthocyanins: a crossover trial in healthy men. Food and Function, 2017, 8, 2030-2037.	2.1	17
206	Development of a New Cell-Based Oral Model To Study the Interaction of Oral Constituents with Food Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 12833-12843.	2.4	17
207	Study of the multi-equilibria of red wine colorants pyranoanthocyanins and evaluation of their potential in dye-sensitized solar cells. Solar Energy, 2019, 191, 100-108.	2.9	17
208	Disaccharide anthocyanin delphinidin 3-O-sambubioside from Hibiscus sabdariffa L.: Candida antarctica lipase B-catalyzed fatty acid acylation and study of its color properties. Food Chemistry, 2021, 344, 128603.	4.2	17
209	Color stability and spectroscopic properties of deoxyvitisins in aqueous solution. New Journal of Chemistry, 2014, 38, 539-544.	1.4	16
210	Molecular insights on the interaction and preventive potential of epigallocatechin-3-gallate in Celiac Disease. International Journal of Biological Macromolecules, 2018, 112, 1029-1037.	3.6	16
211	Impact of a Waterâ€Soluble Gallic Acidâ€Based Dendrimer on the Colorâ€Stabilizing Mechanisms of Anthocyanins. Chemistry - A European Journal, 2019, 25, 11696-11706.	1.7	16
212	Recovery of added value compounds from cork industry by-products. Industrial Crops and Products, 2019, 140, 111599.	2.5	16
213	Pyranoanthocyanins Interfering with the Quorum Sensing of Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Molecular Sciences, 2021, 22, 8559.	1.8	16
214	Alternative Extraction and Downstream Purification Processes for Anthocyanins. Molecules, 2022, 27, 368.	1.7	16
215	Mass Spectrometry Parameters Optimization for the 46 Multiclass Pesticides Determination in Strawberries with Gas Chromatography Ion-Trap Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2012, 23, 2187-2197.	1.2	15
216	Evidence for Copigmentation Interactions between Deoxyanthocyanidin Derivatives (Oaklins) and Common Copigments in Wine Model Solutions. Journal of Agricultural and Food Chemistry, 2014, 62, 6995-7001.	2.4	15

#	Article	IF	CITATIONS
217	Endoscopic re-opening of third ventriculostomy: Case series and review of literature. Clinical Neurology and Neurosurgery, 2016, 145, 58-63.	0.6	15
218	Reactivity of Cork Extracts with (+)-Catechin and Malvidin-3- <i>O</i> -glucoside in Wine Model Solutions: Identification of a New Family of Ellagitannin-Derived Compounds (Corklins). Journal of Agricultural and Food Chemistry, 2017, 65, 8714-8726.	2.4	15
219	Dye-sensitized solar cells based on dimethylamino-Ï€-bridge-pyranoanthocyanin dyes. Solar Energy, 2020, 206, 188-199.	2.9	15
220	Use of Polyphenols as Modulators of Food Allergies. From Chemistry to Biological Implications. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	15
221	Anthocyanin content in raspberry and elderberry: The impact of cooking and recipe composition. International Journal of Gastronomy and Food Science, 2021, 24, 100316.	1.3	15
222	A New Insight into the Degradation of Anthocyanins: Reversible versus the Irreversible Chemical Processes. Journal of Agricultural and Food Chemistry, 2022, 70, 656-668.	2.4	15
223	Intestinal Oxidative State Can Alter Nutrient and Drug Bioavailability. Oxidative Medicine and Cellular Longevity, 2009, 2, 322-327.	1.9	14
224	Isolation and Structural Characterization of Anthocyanin-furfuryl Pigments. Journal of Agricultural and Food Chemistry, 2010, 58, 5664-5669.	2.4	14
225	Oxidative formation and structural characterisation of new α-pyranone (lactone) compounds of non-oxonium nature originated from fruit anthocyanins. Food Chemistry, 2011, 127, 984-992.	4.2	14
226	Characterization of Kinetic and Thermodynamic Parameters of Cyanidin-3-glucoside Methyl and Glucuronyl Metabolite Conjugates Journal of Physical Chemistry B, 2015, 119, 2010-2018.	1.2	14
227	Updating the research on prodelphinidins from dietary sources. Food Research International, 2016, 85, 170-181.	2.9	14
228	Synthesis and structural characterization by LC–MS and NMR of a new semi-natural blue amino-based pyranoanthocyanin compound. Tetrahedron Letters, 2016, 57, 1277-1281.	0.7	14
229	Synthesis and structural characterization of novel pyranoluteolinidin dyes. Tetrahedron Letters, 2017, 58, 159-162.	0.7	14
230	A New Chemical Pathway Yielding A-Type Vitisins in Red Wines. International Journal of Molecular Sciences, 2017, 18, 762.	1.8	14
231	Stabilization of bluish pyranoanthocyanin pigments in aqueous systems using lignin nanoparticles. Dyes and Pigments, 2019, 166, 367-374.	2.0	14
232	Microwave-Assisted Synthesis and Ionic Liquids: Green and Sustainable Alternatives toward Enzymatic Lipophilization of Anthocyanin Monoglucosides. Journal of Agricultural and Food Chemistry, 2020, 68, 7387-7392.	2.4	14
233	An Insight into Kiwiberry Leaf Valorization: Phenolic Composition, Bioactivity and Health Benefits. Molecules, 2021, 26, 2314.	1.7	14
234	A theoretical interpretation of the color of two classes of pyranoanthocyanins. Computational and Theoretical Chemistry, 2010, 948, 61-64.	1.5	13

#	Article	IF	CITATIONS
235	Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6769-6772.	1.0	13
236	Comparison of Disposable Pipette Extraction and Dispersive Solid-Phase Extraction in the QuEChERS Method for Analysis of Pesticides in Strawberries. Journal of Chromatographic Science, 2014, 52, 1339-1345.	0.7	13
237	Flavonoids as dopaminergic neuromodulators. Molecular Nutrition and Food Research, 2016, 60, 495-501.	1.5	13
238	Synthesis and Structural Characterization of Amino-Based Pyranoanthocyanins with Extended Electronic Delocalization. Synlett, 2016, 27, 2459-2462.	1.0	13
239	"Clicking―an Ionic Liquid to a Potent Antimicrobial Peptide: On the Route towards Improved Stability. International Journal of Molecular Sciences, 2020, 21, 6174.	1.8	13
240	Synthesis and Structural Characterization of Two Diasteroisomers of Vinylcatechin Dimers. Journal of Agricultural and Food Chemistry, 2009, 57, 10341-10348.	2.4	12
241	Unusual Color Change of Vinylpyranoanthocyaninâ^'Phenolic Pigments. Journal of Agricultural and Food Chemistry, 2010, 58, 4292-4297.	2.4	12
242	Effect of sugar acylation on the antioxidant properties of <i>Vitis vinifera</i> red grape malvidinâ€3â€glucoside. International Journal of Food Science and Technology, 2011, 46, 343-349.	1.3	12
243	Ageing impact on the antioxidant and antiproliferative properties of Port wines. Food Research International, 2015, 67, 199-205.	2.9	12
244	Turning a Collagenesis-Inducing Peptide Into a Potent Antibacterial and Antibiofilm Agent Against Multidrug-Resistant Gram-Negative Bacteria. Frontiers in Microbiology, 2019, 10, 1915.	1.5	12
245	Chemical/Color Stability and Rheological Properties of Cyanidin-3-Glucoside in Deep Eutectic Solvents as a Gateway to Design Task-Specific Bioactive Compounds. ACS Sustainable Chemistry and Engineering, 2020, 8, 16184-16196.	3.2	12
246	Characterization of Anthocyanins and Anthocyanin-Derivatives in Red Wines during Ageing in Custom Oxygenation Oak Wood Barrels. Molecules, 2021, 26, 64.	1.7	12
247	Red wine interferes with oestrogen signalling in rat hippocampus. Journal of Steroid Biochemistry and Molecular Biology, 2008, 111, 74-79.	1.2	11
248	Synthesis of a new bluish pigment from the reaction of a methylpyranoanthocyanin with sinapaldehyde. Tetrahedron Letters, 2011, 52, 1996-2000.	0.7	11
249	Thermodynamics, Kinetics, and Photochromism of Oaklins: A Recent Family of Deoxyanthocyanidins. Journal of Physical Chemistry B, 2013, 117, 1901-1910.	1.2	11
250	A Quinacrine Analogue Selective Against Gastric Cancer Cells: Insight from Biochemical and Biophysical Studies. ChemMedChem, 2016, 11, 2703-2712.	1.6	11
251	Identification and characterization of proteolytically resistant gluten-derived peptides. Food and Function, 2018, 9, 1726-1735.	2.1	11
252	Impact of Lignosulfonates on the Thermodynamic and Kinetic Parameters of Malvidin-3- <i>O</i> -glucoside in Aqueous Solutions. Journal of Agricultural and Food Chemistry, 2018, 66, 6382-6387.	2.4	11

#	Article	IF	CITATIONS
253	An efficient method for anthocyanins lipophilization based on enzyme retention in membrane systems. Food Chemistry, 2019, 300, 125167.	4.2	11
254	Hemisynthesis and structural characterization of flavanolâ€(4,8)â€vitisins by mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 1964-1970.	0.7	10
255	Identification by mass spectrometry of new compounds arising from the reactions involving malvidinâ€3â€glucosideâ€(O)â€catechin, catechin and malvidinâ€3â€glucoside. Rapid Communications in Mass Spectrometry, 2012, 26, 2123-2130.	0.7	10
256	Another side of the oxazaphospholidine oxide chiral ortho-directing group. Organic and Biomolecular Chemistry, 2012, 10, 4036.	1.5	10
257	A novel reaction mechanism for the formation of deoxyanthocyanidins. Tetrahedron Letters, 2012, 53, 1300-1303.	0.7	10
258	Flavanols: Catechins and Proanthocyanidins. , 2013, , 1753-1801.		10
259	New Procyanidin B3–Human Salivary Protein Complexes by Mass Spectrometry. Effect of Salivary Protein Profile, Tannin Concentration, and Time Stability. Journal of Agricultural and Food Chemistry, 2014, 62, 10038-10045.	2.4	10
260	Colour modulation of blue anthocyanin-derivatives. Lignosulfonates as a tool to improve the water solubility of natural blue dyes. Dyes and Pigments, 2018, 153, 150-159.	2.0	10
261	A new group of synthetic phenolic-containing amphiphilic molecules for multipurpose applications: Physico-chemical characterization and cell-toxicity study. Scientific Reports, 2018, 8, 832.	1.6	10
262	Insights into the development of grapefruit nutraceutical powder by spray drying: physical characterization, chemical composition and 3D intestinal permeability. Journal of the Science of Food and Agriculture, 2019, 99, 4686-4694.	1.7	10
263	<i>In vivo</i> systemic toxicity assessment of an oxidized dextrinâ€based hydrogel and its effectiveness as a carrier and stabilizer of granular synthetic bone substitutes. Journal of Biomedical Materials Research - Part A, 2019, 107, 1678-1689.	2.1	10
264	On the Limits of Anthocyanins Co-Pigmentation Models and Respective Equations. Journal of Agricultural and Food Chemistry, 2021, 69, 1359-1367.	2.4	10
265	Cyanidin-3-glucoside Lipophilic Conjugates for Topical Application: Tuning the Antimicrobial Activities with Fatty Acid Chain Length. Processes, 2021, 9, 340.	1.3	10
266	New insights into the oral interactions of different families of phenolic compounds: Deepening the astringency mouthfeels. Food Chemistry, 2022, 375, 131642.	4.2	10
267	Influence of anthocyanins and derivative pigments from blueberry (Vaccinium myrtillus) extracts on MPP+ intestinal uptake: A structure–activity approach. Food Chemistry, 2008, 109, 587-594.	4.2	9
268	Impact of culture media glucose levels on the intestinal uptake of organic cations. Cytotechnology, 2010, 62, 23-29.	0.7	9
269	Synthesis and Structural Characterization of a Novel Symmetrical 2,10-Bis-Styryl-1-Benzopyrylium Dye. Synlett, 2018, 29, 1390-1394.	1.0	9
270	Synthesis and chemical equilibria of a new 10-methylpyrano-2-styrylbenzopyrylium pigment in aqueous solution and its modulation by different micellar systems. Dyes and Pigments, 2019, 167, 60-67.	2.0	9

#	Article	IF	CITATIONS
271	Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Critical Reviews in Food Science and Nutrition, 2021, 61, 3007-3030.	5.4	9
272	Deoxyvitisins: a new set of pyrano-3-deoxyanthocyanidins. Tetrahedron Letters, 2013, 54, 4785-4788.	0.7	8
273	Bioavailability of Anthocyanins. , 2013, , 2465-2487.		8
274	Synthesis of the Main Red Wine Anthocyanin Metabolite: Malvidin-3-O-β-Glucuronide. Synlett, 2017, 28, 593-596.	1.0	8
275	Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins. Foods, 2020, 9, 1867.	1.9	8
276	The peculiarity of malvidin 3-O-(6-O-p-coumaroyl) glucoside aggregation. Intra and intermolecular interactions. Dyes and Pigments, 2020, 180, 108382.	2.0	8
277	Metabolomics Insights of the Immunomodulatory Activities of Phlorizin and Phloretin on Human THP-1 Macrophages. Molecules, 2021, 26, 787.	1.7	8
278	Antiradical Properties of Red Wine Portisins. Journal of Agricultural and Food Chemistry, 2011, 59, 11833-11837.	2.4	7
279	Migration of Tannins and Pectic Polysaccharides from Natural Cork Stoppers to the Hydroalcoholic Solution. Journal of Agricultural and Food Chemistry, 2020, 68, 14230-14242.	2.4	7
280	Interaction of a Procyanidin Mixture with Human Saliva and the Variations of Salivary Protein Profiles over a 1-Year Period. Journal of Agricultural and Food Chemistry, 2020, 68, 13824-13832.	2.4	7
281	HIV-Infected Patients With and Without Lipodystrophy Under Combined Antiretroviral Therapy: Evaluation of Body Composition. Journal of Clinical Densitometry, 2018, 21, 75-82.	0.5	6
282	Metabolic pathways of degradation of malvidin-3-O-monoglucoside by Candida oleophila. International Biodeterioration and Biodegradation, 2019, 144, 104768.	1.9	6
283	Variation in the Phenolic Composition of Cork Stoppers from Different Geographical Origins. Journal of Agricultural and Food Chemistry, 2020, 68, 14970-14977.	2.4	6
284	Dendrimers as Color-Stabilizers of Pyranoanthocyanins: The Dye Concentration Governs the Host–Guest Interaction Mechanisms. ACS Applied Polymer Materials, 2021, 3, 1457-1464.	2.0	6
285	Synthesis of novel pyrano-3,7-deoxyanthocyanin derivatives and study of their thermodynamic, photophysical and cytotoxicity properties. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 415, 113313.	2.0	6
286	The Role of Anthocyanins, Deoxyanthocyanins and Pyranoanthocyanins on the Modulation of Tyrosinase Activity: An In Vitro and In Silico Approach. International Journal of Molecular Sciences, 2021, 22, 6192.	1.8	6
287	Strategies used by nature to fix the red, purple and blue colours in plants: a physical chemistry approach. Physical Chemistry Chemical Physics, 2021, 23, 24080-24101.	1.3	6
288	Impact of Eutectic Solvents Utilization in the Microwave Assisted Extraction of Proanthocyanidins from Grape Pomace. Molecules, 2022, 27, 246.	1.7	6

#	Article	IF	CITATIONS
289	Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3096-3128.	5.9	6
290	Colorimetric pH-Responsive Biomaterials Based on Pyranoflavylium-Biopolymer Hybrid Conjugates. ACS Applied Polymer Materials, 2022, 4, 4961-4971.	2.0	6
291	A computational study of vinylpyranoanthocyanin-phenolic pigments (portisins). Computational and Theoretical Chemistry, 2010, 946, 113-118.	1.5	5
292	Synthesis and Structural Characterization of Oaklin–Catechins. Journal of Agricultural and Food Chemistry, 2012, 60, 1528-1534.	2.4	5
293	Chromatographic and mass spectrometry analysis of wheat flour prolamins, the causative compounds of celiac disease. Food and Function, 2017, 8, 2712-2721.	2.1	5
294	Influence of rye flour enzymatic biotransformation on the antioxidant capacity and transepithelial transport of phenolic acids. Food and Function, 2018, 9, 1889-1898.	2.1	5
295	Polymeric Pigments in Red Wines. , 2019, , 207-218.		5
296	Understanding the molecular interactions between a yeast protein extract and phenolic compounds. Food Research International, 2021, 143, 110261.	2.9	5
297	Synthesis, structural characterization and chromatic features of new 2-phenyl-1-benzopyrylium and 2-phenyl-styryl-1-benzopyrylium amino-based blue dyes. Tetrahedron Letters, 2021, 85, 153487.	0.7	5
298	Disclosure of a Promising Lead to Tackle Complicated Skin and Skin Structure Infections: Antimicrobial and Antibiofilm Actions of Peptide PP4-3.1. Pharmaceutics, 2021, 13, 1962.	2.0	5
299	Comparative Analysis of In Vitro Rat Liver Metabolism of the Antimalarial Primaquine and a Derived Imidazoquine. Drug Metabolism Letters, 2012, 6, 15-25.	0.5	4
300	Direct Identification and Characterization of Phenolic Compounds from Crude Extracts of Buds and Internodes of Grapevine (Vitis vinifera cv Merlot). Natural Product Communications, 2014, 9, 1934578X1400901.	0.2	4
301	Special issue on anthocyanins. Planta, 2014, 240, 899-899.	1.6	4
302	Anthocyanins: Nutrition and Health. Reference Series in Phytochemistry, 2018, , 1-37.	0.2	4
303	Anthocyanins: Nutrition and Health. Reference Series in Phytochemistry, 2019, , 1097-1133.	0.2	4
304	pH-regulated interaction modes between cyanidin-3-glucoside and phenylboronic acid-modified alginate. Carbohydrate Polymers, 2022, 280, 119029.	5.1	4
305	Preparation of 10-(hexylcarbamoyl)pyranomalvidin-3-glucoside from 10-carboxypyranomalvidin-3-glucoside using carbodiimide chemistry. Food Chemistry, 2022, 393, 133429.	4.2	4
306	Synthesis of a new pyranoanthocyanin dimer linked through a methyl-methine bridge. Tetrahedron Letters, 2011, 52, 2957-2960.	0.7	3

#	Article	IF	CITATIONS
307	Photochemistry of 5-Hydroxy-4'-Dimethylaminoflavylium in the presence of SDS micelles. The role of metastable states of flavylium cation-quinoidal base and trans-chalcones. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112827.	2.0	3
308	Oenological perspective of red wine astringency. Oeno One, 2017, 51, .	0.7	3
309	Synthesis of 2-Diphenylphosphinoyl-2-Halo Biphenyls Via Suzuki-Miyaura Coupling as Possible Route to Non-Symmetric Biphenyl Phosphines. Letters in Organic Chemistry, 2006, 3, 567-570.	0.2	2
310	Experimental data for the synthesis of a new dimeric prodelphinidin gallate. Data in Brief, 2016, 8, 631-636.	0.5	2
311	Wine. , 2017, , 593-621.		2
312	Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chemistry, 2022, 367, 130607.	4.2	2
313	Influence of extracellular glucose concentration on organic cation transport in Cacoâ€2 cells. FASEB Journal, 2007, 21, A730.	0.2	2
314	New-Level Insights into the Effects of Grape Seed Polyphenols on the Intestinal Processing and Transport of a Celiac Disease Immunodominant Peptide. Journal of Agricultural and Food Chemistry, 2021, 69, 13474-13486.	2.4	2
315	Photoactivated cell-killing amino-based flavylium compounds. Scientific Reports, 2021, 11, 22005.	1.6	2
316	On the contribution of intramolecular kinetics properties of an important rotamer of vinylpyranoanthocyaninâ€phenol pigment (portisin). International Journal of Quantum Chemistry, 2011, 111, 1355-1360.	1.0	1
317	Polyphenol Interactions and Food Organoleptic Properties. , 2019, , 650-655.		1
318	Eat Tasty and Healthy: Role of Polyphenols in Functional Foods. , 0, , .		1
319	Wine astringent compounds monitored by an electrochemical biosensor. Food Chemistry, 2022, 395, 133587.	4.2	1
320	Synthesis of a New Catechin-Pyrylium Derived Pigment ChemInform, 2005, 36, no.	0.1	0
321	Development of lignin-based nanoparticles: fabrication methods and functionalization approaches. , 2021, , 227-270.		Ο
322	A pH-responsive fluorescent sensor based on a new pyranoxanthylium salt. Photochemical and Photobiological Sciences, 2021, 20, 513-521.	1.6	0
323	In vivo effect of pomegranate (Punica granatum) juice intake on CYPs expression and hepatic oxidative status. FASEB Journal, 2007, 21, A1066.	0.2	0
324	Absorption of anthocyanins through intestinal epithelial cells. Effect of ethanol FASEB Journal, 2008, 22, 701.10.	0.2	0

#	Article	IF	CITATIONS
325	Flavanâ€3â€ols Transport Across Bloodâ€Brain Barrier. FASEB Journal, 2009, 23, 717.8.	0.2	0
326	Kidney graft function before pregnancy as a predictor of graft, maternal and fetal outcomes in pregnant renal transplant recipients. Journal of Perinatal Medicine, 2021, .	0.6	0