Kourosh Kabiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854340/publications.pdf

Version: 2024-02-01

95 papers

4,102 citations

30 h-index 61 g-index

95 all docs 95
docs citations

95 times ranked 4168 citing authors

#	Article	IF	CITATIONS
1	Preparation of itaconic acid bio-based cross-linkers for hydrogels. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 165-174.	2.2	11
2	Preparation of antibacterial polyester–cotton absorbents; the effects of star-shaped functional oligomers. Polymer Bulletin, 2021, 78, 4959-4975.	3.3	2
3	Surface cross-linked SAPs with improved swollen gel strength using diol compounds. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 62-71.	2.2	7
4	Investigation of the mechanical and thermal properties of reactive AAEM-co-MMA adhesive. Polymer Bulletin, 2020, 77, 5767-5782.	3.3	5
5	Microwave-Assisted Modification of Nonwoven Fabric: Inducing Absorbency and Antibacterial Properties. Fibers and Polymers, 2020, 21, 1857-1867.	2.1	1
6	Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites. Iranian Polymer Journal (English Edition), 2020, 29, 287-299.	2.4	14
7	Making vinyl ester resin greener: Succinic acid–glycerolâ€derived reactive diluent as an alternative to styrene. Journal of Applied Polymer Science, 2020, 137, 49144.	2.6	5
8	Epoxidized and Cyclocarbonated Star-Shaped Macromolecules as Bio-Based Internal and External Crosslinkers for Superabsorbent Polymer Hydrogels. Journal of Polymers and the Environment, 2020, 28, 1684-1695.	5.0	9
9	Non-isocyanate polyurethane thermoset based on a bio-resourced star-shaped epoxy macromonomer in comparison with a cyclocarbonate fossil-based epoxy resin: A preliminary study on thermo-mechanical and antibacterial properties. Journal of CO2 Utilization, 2019, 34, 558-567.	6.8	29
10	Synthesis of bioâ€based internal and external crossâ€linkers based on tannic acid for preparation of antibacterial superabsorbents. Polymers for Advanced Technologies, 2019, 30, 2894-2905.	3.2	37
11	Bio-based thermoset alloys from epoxy acrylate, sesame oil- and castor oil-derived resins: Renewable alternatives to vinyl ester and unsaturated polyester resins. Polymers From Renewable Resources, 2019, 10, 27-44.	1.3	13
12	Engineered Green Adhesives Based on Demands: Star-Shaped Glycerol–Lactic Acid Oligomers in Anaerobic Adhesives. ACS Sustainable Chemistry and Engineering, 2019, 7, 16247-16256.	6.7	11
13	Linseed oilâ€based reactive diluents preparation to improve tetraâ€functional epoxy resin properties. Polymers for Advanced Technologies, 2019, 30, 2361-2369.	3.2	11
14	Novel Environmentally Friendly Superabsorbent Hydrogel Hybrids from Synthesized Star-Shaped Bio-based Monomers and Acrylic Acid. Journal of Polymers and the Environment, 2019, 27, 1988-2000.	5.0	13
15	Superabsorbent polymers achieved by surface cross linking of poly(sodium acrylate) using microwave method. Iranian Polymer Journal (English Edition), 2019, 28, 539-548.	2.4	21
16	"Click―on SAP: Superabsorbent polymer surface modification via CuAAC reaction toward antibacterial activity and improved swollen gel strength. Applied Surface Science, 2019, 487, 1131-1144.	6.1	17
17	A green strategy to endow superabsorbents with stretchability and self-healability. Chemical Engineering Journal, 2019, 370, 274-286.	12.7	14
18	Cure kinetics of modified lignosulfonate/epoxy blends. Thermochimica Acta, 2019, 675, 18-28.	2.7	11

#	Article	IF	CITATIONS
19	Synthesis of poly (2-acrylamido-2-methyl propane sulfonic acid) with high water absorbency and absorption under load (AUL) as concrete grade superabsorbent and its performance. Construction and Building Materials, 2019, 206, 540-551.	7.2	35
20	The synthesis and incorporation of a star-shaped bio-based modifier in the acrylic acid based superabsorbent: a strategy to enhance the absorbency under load. Polymer-Plastics Technology and Materials, 2019, 58, 1678-1690.	1.3	12
21	High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique. Polymer Bulletin, 2019, 76, 4047-4068.	3.3	13
22	Glycerol″actic acid starâ€shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels. Polymers for Advanced Technologies, 2019, 30, 390-399.	3.2	26
23	Hybrid hydrogel based on pre-gelatinized starch modified with glycidyl-crosslinked microgel. Iranian Polymer Journal (English Edition), 2018, 27, 183-192.	2.4	15
24	Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: From natural waste to value-added bio-additive. Journal of CO2 Utilization, 2018, 24, 50-58.	6.8	27
25	Toward poly(furfuryl alcohol) applications diversification: Novel selfâ€healing network and toughening epoxy–novolac resin. Journal of Applied Polymer Science, 2018, 135, 45921.	2.6	31
26	Transamidation: A feasible approach of surface modification to improve absorbency under load of agricultural superabsorbent materials. Journal of Materials Research, 2018, 33, 2327-2335.	2.6	10
27	Hydroxymethyl furfural-modified urea–formaldehyde resin: synthesis and properties. European Journal of Wood and Wood Products, 2017, 75, 71-80.	2.9	22
28	Fine tuning of SAP properties via epoxy-silane surface modification. Polymers for Advanced Technologies, 2017, 28, 1132-1147.	3.2	27
29	An acid-free water-born quaternized chitosan/montmorillonite loaded into an innovative ultra-fine bead-free water-born nanocomposite nanofibrous scaffold; <i>in vitro</i> and <i>in vivo</i> approaches. Biomedical Materials (Bristol), 2017, 12, 045014.	3.3	4
30	Induced superabsorbency in polyester fiber. Iranian Polymer Journal (English Edition), 2016, 25, 635-646.	2.4	9
31	Improvement in Mechanical Performance of Anionic Hydrogels Using Fullâ€Interpenetrating Polymer Network Reinforced with Graphene Oxide Nanosheets. Advances in Polymer Technology, 2016, 35, 386-395.	1.7	7
32	Practical Improvement of SAP Hydrogel Properties via Facile Tunable Cross-linking of the Particles Surface. Polymer-Plastics Technology and Engineering, 2016, 55, 278-290.	1.9	33
33	A novel method for toughening epoxy resin through CO2 fixation reaction. Journal of CO2 Utilization, 2016, 16, 225-235.	6.8	21
34	Converting date seed biomass into highly absorbing hydrogel. Iranian Polymer Journal (English) Tj ETQqO 0 0 rgBT	/Qyerlock	10 Tf 50 14
35	Simple and efficient approach for recycling of fine acrylic-based superabsorbent waste. Polymer Bulletin, 2016, 73, 1119-1133.	3.3	16
36	Swelling and mechanical behavior of nanoclay reinforced hydrogel: single network vs. full interpenetrating polymer network. Polymer Bulletin, 2015, 72, 1663-1681.	3.3	19

#	Article	IF	CITATIONS
37	Structure, swelling and mechanical behavior of a cationic full-IPN hydrogel reinforced with modified nanoclay. Iranian Polymer Journal (English Edition), 2015, 24, 379-388.	2.4	11
38	Novel crosslinking method for preparation of acrylic thickener microgels through inverse emulsion polymerization. Iranian Polymer Journal (English Edition), 2015, 24, 1049-1056.	2.4	18
39	In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles. Biomaterials Science, 2015, 3, 1466-1474.	5. 4	21
40	Effective parameters in surface cross-linking of acrylic-based water absorbent polymer particles using bisphenol A diethylene glycidyl ether and cycloaliphatic diepoxide. Iranian Polymer Journal (English) Tj ETQq0 0 C) rg B.¼ /Ove	erloadz 10 Tf 5
41	Radical copolymerization of acrylic acid and OEGMA475: Monomer reactivity ratios and structural parameters of the copolymer. Macromolecular Research, 2014, 22, 1330-1336.	2.4	12
42	Synthesis and Characterization of Phosphonic-Acrylic Organogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 430-437.	3.4	8
43	Converting water absorbent polymer to alcohol absorbent polymer. Polymers for Advanced Technologies, 2013, 24, 28-33.	3.2	10
44	Cationic highly alcohol-swellable gels: synthesis and characterization. Journal of Polymer Research, 2013, 20, 1.	2.4	34
45	Investigation of viscoelastic and thermal properties of cyclic carbonate bearing copolymers. Polymer Science - Series B, 2013, 55, 327-335.	0.8	5
46	An investigation into novel multifunctional cross-linkers effect on microgel prepared by precipitation polymerization. Reactive and Functional Polymers, 2013, 73, 524-530.	4.1	19
47	Copolymers of glycidyl methacrylate and octadecyl acrylate: synthesis, characterization, swelling properties, and reactivity ratios. Designed Monomers and Polymers, 2013, 16, 79-88.	1.6	33
48	Preparation and Characterization of Alcogels Based on (Poly Ethylene Glycol Methyl Ether) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf _. 50 302 Td
49	HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency. BioMed Research International, 2013, 2013, 1-7.	1.9	20
50	Glycidyl Methacrylate Copolymers Modified with CO ₂ . Soft Materials, 2013, 11, 430-439.	1.7	6
51	Rheological Properties of Microgel Prepared with Long-Chain Crosslinkers by a Precipitation Polymerization Method. Journal of Macromolecular Science - Physics, 2012, 51, 880-896.	1.0	9
52	Aqueous free-radical polymerization of PEGMEMA macromer: kinetic studies via an on-line 1H NMR technique. Iranian Polymer Journal (English Edition), 2012, 21, 683-688.	2.4	11
53	Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2095-2106.	7.6	53
54	Spectral and chemical monitoring of cyclo-addition reaction of CO2 with poly(MMA-co-GMA) copolymers. Chinese Journal of Polymer Science (English Edition), 2012, 30, 727-734.	3.8	4

#	Article	IF	CITATIONS
55	Overentrant swelling behaviour of poly(potassium, 3-sulfopropyl acrylate-acrylic acid) gels. Journal of Polymer Research, 2012, 19, 1.	2.4	11
56	Synthesis and characterization of alcogels based on ethylene glycol methyl ether methacrylate-vinyl phosphonic acid copolymers. Journal of Polymer Research, 2012, 19, 1.	2.4	14
57	Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corrosion Science, 2011, 53, 89-98.	6.6	379
58	Effect of functional monomer GMA on the physical–mechanical properties of coatings from poly(BA–MMA) latexes. Journal of Materials Science, 2011, 46, 2771-2777.	3.7	22
59	Superabsorbent polymer composites: does clay always improve properties?. Journal of Materials Science, 2011, 46, 6718-6725.	3.7	18
60	Super alcohol-absorbent gels of sulfonic acid-contained poly(acrylic acid). Journal of Polymer Research, 2011, 18, 449-458.	2.4	24
61	Effect of long-chain monoacrylate on the residual monomer content, swelling and thermomechanical properties of SAP hydrogels. Journal of Polymer Research, 2011, 18, 1863-1870.	2.4	5
62	Superabsorbent hydrogel composites and nanocomposites: A review. Polymer Composites, 2011, 32, 277-289.	4.6	368
63	Poly(acrylic acid–sodium styrene sulfonate) organogels: Preparation, characterization, and alcohol superabsorbency. Journal of Applied Polymer Science, 2011, 119, 2759-2769.	2.6	28
64	Nanocomposite superâ€swelling hydrogels with nanorod bentonite. Journal of Applied Polymer Science, 2011, 120, 3453-3459.	2.6	25
65	Minimization of residual monomer content of superabsorbent hydrogels via alteration of initiating system. Journal of Applied Polymer Science, 2011, 120, 2716-2723.	2.6	16
66	Alcohophilic gels: Polymeric organogels composing carboxylic and sulfonic acid groups. Journal of Applied Polymer Science, 2011, 120, 3350-3356.	2.6	16
67	Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications. Chemical Communications, 2010, 46, 6500.	4.1	65
68	Thermo-hydrolytic stability of swelling capacity of superabsorbing composite hydrogels based on AMPS and acrylamide. Journal of Polymer Research, 2010, 17, 151-159.	2.4	29
69	Solvent-, ion- and pH-specific swelling of poly(2-acrylamido-2-methylpropane sulfonic acid) superabsorbing gels. Journal of Polymer Research, 2010, 17, 203-212.	2.4	85
70	Advances in non-hygienic applications of superabsorbent hydrogel materials. Journal of Materials Science, 2010, 45, 5711-5735.	3.7	314
71	Chitosan modified MMTâ€poly(AMPS) nanocomposite hydrogel: Heating effect on swelling and rheological behavior. Journal of Applied Polymer Science, 2010, 116, 2548-2556.	2.6	21
72	Semibatch emulsion copolymerization of butyl acrylate and glycidyl methacrylate: Effect of operating variables. Journal of Applied Polymer Science, 2010, 117, 2771-2780.	2.6	5

#	Article	IF	CITATIONS
73	Extraordinary swelling behavior of poly(AMPS) organogel in solvent/DMSO binary mixed media. Journal of Applied Polymer Science, 2010, 117, 1127-1136.	2.6	18
74	Novel nanocomposite proton exchange membranes based on Nafion \hat{A}^{\otimes} and AMPS-modified montmorillonite for fuel cell applications. Journal of Membrane Science, 2010, 365, 286-293.	8.2	70
75	Effects of structural variables on AUL and rheological behavior of SAP gels. Journal of Applied Polymer Science, 2009, 113, 3676-3686.	2.6	42
76	Residual monomer in superabsorbent polymers: Effects of the initiating system. Journal of Applied Polymer Science, 2009, 114, 2533-2540.	2.6	14
77	Antipolyelectrolyte superabsorbing nanocomposites: Synthesis and properties. Journal of Applied Polymer Science, 2009, 114, 3542-3547.	2.6	17
78	Chitosanâ€modified nanoclay–poly(AMPS) nanocomposite hydrogels with improved gel strength. Polymer International, 2009, 58, 1252-1259.	3.1	56
79	Spectral and chemical determination of copolymer composition of poly (butyl acrylate-co-glycidyl) Tj ETQq $1\ 1\ 0.$	784314 rg	gBT ₄₄ Overlock
80	Nafion \hat{A}^{\otimes} /bio-functionalized montmorillonite nanohybrids as novel polyelectrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 2009, 190, 318-321.	7.8	67
81	Tragacanth gum-graft-polyacrylonitrile: synthesis, characterization and hydrolysis. Journal of Polymer Research, 2008, 15, 173-180.	2.4	68
82	Undesirable effects of heating on hydrogels. Journal of Applied Polymer Science, 2008, 110, 3420-3430.	2.6	42
83	Ionically cross-linked carrageenan-alginate hydrogel beads. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 47-59.	3.5	90
84	pH-Sensitive IPN Hydrogel Beads of Carrageenan-Alginate for Controlled Drug Delivery. Journal of Bioactive and Compatible Polymers, 2007, 22, 342-356.	2.1	96
85	Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polymer Testing, 2006, 25, 470-474.	4.8	186
86	Gum arabic–acrylic superabsorbing hydrogel hybrids: Studies on swelling rate and environmental responsiveness. Journal of Applied Polymer Science, 2006, 102, 5667-5674.	2.6	57
87	Optimized HPLC determination of residual monomer in hygienic SAP hydrogels. Polymer Testing, 2005, 24, 825-828.	4.8	39
88	Novel sulfobetaine-sulfonic acid-contained superswelling hydrogels. Polymers for Advanced Technologies, 2005, 16, 659-666.	3.2	64
89	New Superâ€Absorbing Hydrogel Hybrids from Gum Arabic and Acrylic Monomers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1655-1666.	2.2	53
90	Porous Superabsorbent Hydrogel Composites: Synthesis, Morphology and Swelling Rate. Macromolecular Materials and Engineering, 2004, 289, 653-661.	3.6	132

Kourosh Kabiri

#	Article	IF	CITATIONS
91	Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. European Polymer Journal, 2003, 39, 1341-1348.	5.4	357
92	Novel approach to highly porous superabsorbent hydrogels: synergistic effect of porogens on porosity and swelling rate. Polymer International, 2003, 52, 1158-1164.	3.1	100
93	Superabsorbent hydrogel composites. Polymers for Advanced Technologies, 2003, 14, 438-444.	3.2	163
94	Organosilane compounds for tunable recycling of waste superabsorbent polymer fine particles. Polymer Bulletin, 0 , 1 .	3.3	0
95	Quick and green toward conductive thermallyâ€stable biobased <scp>starâ€shaped</scp> oligomers. Polymers for Advanced Technologies, 0, , .	3.2	2