Dong Won Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854138/publications.pdf

Version: 2024-02-01

393982 1,285 46 19 citations h-index papers

g-index 49 49 49 1440 docs citations times ranked citing authors all docs

377514

34

#	Article	IF	CITATIONS
1	Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. Journal of Materials Chemistry A, 2020, 8, 7474-7494.	5.2	122
2	Fine‶uning of the Carbon Dioxide Capture Capability of Diamineâ€Grafted Metal–Organic Framework Adsorbents Through Amine Functionalization. ChemSusChem, 2017, 10, 541-550.	3.6	88
3	A Hydrogenâ€Bonded Organic Framework (HOF) with Typeâ€IV NH ₃ Adsorption Behavior. Angewandte Chemie - International Edition, 2019, 58, 16152-16155.	7.2	77
4	Homodiamine-functionalized metal–organic frameworks with a MOF-74-type extended structure for superior selectivity of CO ₂ over N ₂ . Journal of Materials Chemistry A, 2015, 3, 19177-19185.	5.2	75
5	Costâ€Effective, Highâ€Performance Porousâ€Organicâ€Polymer Conductors Functionalized with Sulfonic Acid Groups by Direct Postsynthetic Substitution. Angewandte Chemie - International Edition, 2016, 55, 16123-16126.	7.2	72
6	Post-synthetic modifications in porous organic polymers for biomedical and related applications. Chemical Society Reviews, 2022, 51, 43-56.	18.7	68
7	High Ammonia Uptake of a Metal–Organic Framework Adsorbent in a Wide Pressure Range. Angewandte Chemie - International Edition, 2020, 59, 22531-22536.	7. 2	54
8	A diamine-grafted metal–organic framework with outstanding CO ₂ capture properties and a facile coating approach for imparting exceptional moisture stability. Journal of Materials Chemistry A, 2019, 7, 8177-8183.	5.2	52
9	Highâ€Throughput Discovery of Ni(IN) ₂ for Ethane/Ethylene Separation. Advanced Science, 2021, 8, e2004940.	5.6	50
10	Fine-tuning of wettability in a single metal–organic framework <i>via</i> postcoordination modification and its reduced graphene oxide aerogel for oil–water separation. Chemical Science, 2019, 10, 2663-2669.	3.7	48
11	Diamineâ€Functionalization of a Metal–Organic Framework Adsorbent for Superb Carbon Dioxide Adsorption and Desorption Properties. ChemSusChem, 2018, 11, 1694-1707.	3.6	40
12	A Robust Hydrogen-Bonded Metal–Organic Framework with Enhanced Ethane Uptake and Selectivity. Chemistry of Materials, 2021, 33, 6193-6199.	3.2	39
13	PDMS-coated hypercrosslinked porous organic polymers modified <i>via</i> double postsynthetic acidifications for ammonia capture. Chemical Science, 2018, 9, 6871-6877.	3.7	36
14	A conductive porous organic polymer with superprotonic conductivity of a Nafion-type electrolyte. Journal of Materials Chemistry A, 2017, 5, 17492-17498.	5.2	35
15	Shaping of a Metal–Organic Framework–Polymer Composite and Its CO ₂ Adsorption Performances from Humid Indoor Air. ACS Applied Materials & Interfaces, 2021, 13, 25421-25427.	4.0	34
16	Luminescent Metal–Organic Framework Sensor: Exceptional Cd ²⁺ Turnâ€On Detection and First In Situ Visualization of Cd ²⁺ Ion Diffusion into a Crystal. Chemistry - A European Journal, 2017, 23, 4803-4809.	1.7	32
17	Cost-effective porous-organic-polymer-based electrolyte membranes with superprotonic conductivity and low activation energy. Journal of Materials Chemistry A, 2020, 8, 1147-1153.	5.2	28
18	Emerging Porous Solid Electrolytes for Hydroxide Ion Transport. Advanced Functional Materials, 2021, 31, 2100083.	7.8	27

#	Article	IF	CITATIONS
19	Phase Transformation, Exceptional Quenching Efficiency, and Discriminative Recognition of Nitroaromatic Analytes in Hydrophobic, Nonporous Zn(II) Coordination Frameworks. Inorganic Chemistry, 2017, 56, 305-312.	1.9	22
20	Metal–Organic Framework Adsorbent for Practical Capture of Trace Carbon Dioxide. ACS Applied Materials & Dioxide. ACS Applied Mat	4.0	21
21	Highly selective CO ₂ separation from a CO ₂ /C ₂ Highly selective CO _{/Cosub>/Cosub>2} /Cosub>2/Cosub>2/Cosub>2/Cosub>2/Cosub>2/Cosub>/Cosu	5.2	20
22	Revealing an unusual temperature-dependent CO ₂ adsorption trend and selective CO ₂ uptake over water vapors in a polyamine-appended metal–organic framework. Materials Chemistry Frontiers, 2019, 3, 2759-2767.	3.2	19
23	High Gravimetric and Volumetric Ammonia Capacities in Robust Metal–Organic Frameworks Prepared via Double Postsynthetic Modification. Journal of the American Chemical Society, 2022, 144, 9672-9683.	6.6	17
24	Discriminative Molecular Detection Based on Competitive Absorption by a Luminescent Metal–Organic Framework. ACS Applied Materials & Luminescent Metal†(10, 40372-40377).	4.0	16
25	Pyrimidine-based bipolar host materials for high efficiency solution processed green thermally activated delayed fluorescence OLEDs. Journal of Materials Chemistry C, 2020, 8, 2196-2204.	2.7	15
26	Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets. Inorganic Chemistry, 2017, 56, 4911-4917.	1.9	14
27	Humidity-triggered single-crystal-to-single-crystal structural transformations in a Zn(<scp>ii</scp>) coordination polymer displaying unusual activation energy change in proton conductivity. Chemical Communications, 2019, 55, 9713-9716.	2.2	14
28	A Hydrogenâ€Bonded Organic Framework (HOF) with Typeâ€IV NH 3 Adsorption Behavior. Angewandte Chemie, 2019, 131, 16298-16301.	1.6	14
29	Control of Interchain Antiferromagnetic Coupling in Porous Co(II)-Based Metal–Organic Frameworks by Tuning the Aromatic Linker Length: How Far Does Magnetic Interaction Propagate?. Inorganic Chemistry, 2017, 56, 7443-7448.	1.9	13
30	A robust ethane-selective hypercrosslinked porous organic adsorbent with high ethane capacity. Journal of Materials Chemistry A, 2022, 10, 3579-3584.	5.2	13
31	Synthesis, Structure, and Photoluminescence Properties of a Metalâ€Organic Framework with Hexagonal Channels: Selective Turnâ€On Sensing for Mg ²⁺ Ion. European Journal of Inorganic Chemistry, 2019, 2019, 330-335.	1.0	12
32	Costâ€Effective, Highâ€Performance Porousâ€Organicâ€Polymer Conductors Functionalized with Sulfonic Acid Groups by Direct Postsynthetic Substitution. Angewandte Chemie, 2016, 128, 16357-16360.	1.6	11
33	Two- and three-dimensional Zn(<scp>ii</scp>) coordination polymers constructed from mixed ligand systems: interpenetration, structural transformation and sensing behavior. CrystEngComm, 2016, 18, 4349-4358.	1.3	10
34	Control of the Metal Composition in Bimetallic Mg/Zn(dobpdc) Constructed from a One-Dimensional Zn-Based Template. Inorganic Chemistry, 2019, 58, 14107-14111.	1.9	10
35	Isomeric sp2-C-conjugated porous organic polymer-mediated photo- and sono-catalytic detoxification of sulfur mustard simulant under ambient conditions. Matter, 2021, 4, 3774-3785.	5.0	10
36	Cyclic Structural Transformations from Crystalline to Crystalline to Amorphous Phases and Magnetic Properties of a Mn(II)-Based Metal–Organic Framework. Crystal Growth and Design, 2018, 18, 3360-3365.	1.4	9

#	Article	IF	CITATIONS
37	Engineered Removal of Trace NH ₃ by Porous Organic Polymers Modified via Sequential Postâ€Sulfonation and Postâ€Alkylation. Advanced Sustainable Systems, 2021, 5, 2000161.	2.7	8
38	Diamine Functionalization of a Metal–Organic Framework by Exploiting Solvent Polarity for Enhanced CO ₂ Adsorption. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38358-38364.	4.0	8
39	High Ammonia Uptake of a Metal–Organic Framework Adsorbent in a Wide Pressure Range. Angewandte Chemie, 2020, 132, 22720-22725.	1.6	7
40	Understanding Correlation Between CO ₂ Insertion Mechanism and Chain Length of Diamine in Metalâ€Organic Framework Adsorbents. ChemSusChem, 2021, 14, 2426-2433.	3.6	6
41	Double Hypercrosslinked Porous Organic Polymer-Derived Electrocatalysts for a Water Splitting Device. ACS Applied Energy Materials, 2022, 5, 3269-3274.	2.5	6
42	Slow relaxation dynamics of a mononuclear Er(<scp>iii</scp>) complex surrounded by a ligand environment with anisotropic charge density. Dalton Transactions, 2017, 46, 739-744.	1.6	5
43	Reversible ammonia uptake at room temperature in a robust and tunable metal–organic framework. RSC Advances, 2022, 12, 7605-7611.	1.7	2
44	Structure, photoluminescence, and magnetic properties of a Mn(ii)-based metal–organic framework. New Journal of Chemistry, 2020, 44, 18694-18702.	1.4	1
45	Tuning of chain chirality by interchain stacking forces and the structure–property relationship in coordination systems constructed by meridional Fe ^{III} cyanide and Mn ^{III} Schiff bases. Dalton Transactions, 2016, 45, 19416-19427.	1.6	0
46	Innenrücktitelbild: High Ammonia Uptake of a Metal–Organic Framework Adsorbent in a Wide Pressure Range (Angew. Chem. 50/2020). Angewandte Chemie, 2020, 132, 22991-22991.	1.6	O