Taekyung Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6854093/publications.pdf Version: 2024-02-01

TAEKYLING LIM

#	Article	IF	CITATIONS
1	Rapid mold-free fabrication of long functional PDMS fibers. NPG Asia Materials, 2022, 14, .	3.8	5
2	Elastic Halochromic Fiber as a Reversible pH Sensor. Advanced Materials Technologies, 2021, 6, 2001058.	3.0	17
3	Double-sided infrared display using an opaque substrate based on infrared image recognition mechanism. AIP Advances, 2021, 11, 025136.	0.6	1
4	Real-Time Information-Variable Invisible Barcode Comprising Freely Deformable Infrared-Emitting Yarns. ACS Applied Materials & Interfaces, 2021, 13, 41046-41055.	4.0	3
5	Dipping-Press Coating Method for Retaining Transparency and Imparting Hydrophobicity Regardless of Plastic Substrate Type. Polymers, 2021, 13, 403.	2.0	3
6	Hydrophobic halochromic aerogel capable of reversibly measuring acidic and basic vapors. AIP Advances, 2021, 11, 115115.	0.6	2
7	Pulsed‣aserâ€Induced IR Stereoscopic Imaging. Advanced Optical Materials, 2020, 8, 1901706.	3.6	Ο
8	Metastructure-inspired ultraviolet and blue light filter. AIP Advances, 2020, 10, 105015.	0.6	1
9	Tunable Metamaterial Absorber Using Ferromagnetic Resonance. Journal of the Korean Physical Society, 2020, 77, 1012-1015.	0.3	1
10	Metamaterial's Acceptable Level of Wrecked Meta-pattern. Journal of the Korean Physical Society, 2020, 77, 1016-1020.	0.3	1
11	Superhydrophobic, Elastic, and Conducting Polyurethane-Carbon Nanotube–Silane–Aerogel Composite Microfiber. Polymers, 2020, 12, 1772.	2.0	8
12	Regeneration of a metal oxide catalyst with polyvinylpyrrolidone under xenon flash irradiation for repetitive hydrogen generation. AIP Advances, 2020, 10, 085319.	0.6	0
13	A-site Doping Effect of Multiferroic BiFeO3 Ceramics. Journal of the Korean Physical Society, 2020, 77, 1021-1025.	0.3	2
14	Enhancing Functionality of Epoxy–TiO2-Embedded High-Strength Lightweight Aggregates. Polymers, 2020, 12, 2384.	2.0	5
15	Development of a wearable infrared shield based on a polyurethane–antimony tin oxide composite fiber. NPG Asia Materials, 2020, 12, .	3.8	39
16	Pore Structure Analysis to Adsorb NOx Gas based on Porous Materials. Journal of the Korean Physical Society, 2020, 77, 790-796.	0.3	4
17	Self-Emitting Artificial Cilia Produced by Field Effect Spinning. ACS Applied Materials & amp; Interfaces, 2019, 11, 35286-35293.	4.0	5
18	Lightâ€Liquid Selective Filterâ€Mounted Nanowireâ€Networked Polyurethane Fiber for an Ultraviolet Sensor. Advanced Materials Interfaces, 2019, 6, 1901015.	1.9	3

TAEKYUNG LIM

#	Article	IF	CITATIONS
19	Pen drawing display. Nature Communications, 2019, 10, 4334.	5.8	15
20	Control of adiabatic properties using thermal meta-structures. AIP Advances, 2019, 9, 045111.	0.6	3
21	Development of a selectively liquid-blocking and vapor-passage microfilter based on polyurethane-aerogel microfibers. AIP Advances, 2019, 9, .	0.6	2
22	Infrared Invisibility Cloak Based on Polyurethane–Tin Oxide Composite Microtubes. ACS Applied Materials & Interfaces, 2019, 11, 14296-14304.	4.0	31
23	Distance Effect of Heat Flux Based on Thermal Metamaterials. Journal of the Korean Physical Society, 2019, 75, 1028-1032.	0.3	0
24	Human sweat monitoring using polymer-based fiber. Scientific Reports, 2019, 9, 17294.	1.6	17
25	Mechanical and electrical response variation of the polyurethane–tin oxide–carbon nanotube composite microfiber depending on the chemical solution. Journal of Polymer Science Part A, 2019, 57, 495-502.	2.5	1
26	Detection of chemicals in water using an oxide nanowire transistor covered with an aerogel microsphere thin film as a liquid-vapor separation filter. Journal of the Korean Physical Society, 2018, 72, 144-150.	0.3	1
27	Heat flux effect of thermal metamaterials. AIP Advances, 2018, 8, 105231.	0.6	3
28	Composite Fibers: Hydrophobic Microfiber Strain Sensor Operating Stably in Sweat and Water Environment (Adv. Mater. Interfaces 24/2018). Advanced Materials Interfaces, 2018, 5, 1870120.	1.9	0
29	Organic electrochemical transistor-based channel dimension-independent single-strand wearable sweat sensors. NPG Asia Materials, 2018, 10, 1086-1095.	3.8	79
30	Carbon Nanotube Fibers: Chemically Reactive Polyurethane-Carbon Nanotube Fiber with Aerogel-Microsphere-Thin-Film Selective Filter (Adv. Mater. Interfaces 20/2018). Advanced Materials Interfaces, 2018, 5, 1870099.	1.9	0
31	Contact Angle Analysis: Contact Angle Analysis for the Prediction of Defect States of Graphene Grafted with Functional Groups (Adv. Mater. Interfaces 19/2018). Advanced Materials Interfaces, 2018, 5, 1870093.	1.9	1
32	Hydrophobic Microfiber Strain Sensor Operating Stably in Sweat and Water Environment. Advanced Materials Interfaces, 2018, 5, 1801376.	1.9	11
33	Chemically Reactive Polyurethane–Carbon Nanotube Fiber with Aerogelâ€Microsphereâ€Thinâ€Film Selective Filter. Advanced Materials Interfaces, 2018, 5, 1800935.	1.9	9
34	Contact Angle Analysis for the Prediction of Defect States of Graphene Grafted with Functional Groups. Advanced Materials Interfaces, 2018, 5, 1800166.	1.9	6
35	Thermochemical hydrogen generation of indium oxide thin films. AIP Advances, 2017, 7, 035207.	0.6	10
36	Detection of chemicals in water using a three-dimensional graphene porous structure as liquid-vapor separation filter. Nano Research, 2017, 10, 971-979.	5.8	8

TAEKYUNG LIM

#	Article	IF	CITATIONS
37	Copper-embedded reduced graphene oxide fibers for multi-sensors. Journal of Materials Chemistry C, 2017, 5, 12825-12832.	2.7	17
38	Controlled three-dimensional interconnected capillary structures for liquid repellency engineering. RSC Advances, 2016, 6, 61909-61914.	1.7	8
39	Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter. APL Materials, 2016, 4, 086110.	2.2	1
40	Hydrogen production based on a photoactivated nanowire-forest. Journal of Materials Chemistry A, 2016, 4, 14988-14995.	5.2	5
41	Hydrogen generation enhanced by nano-forest structures. RSC Advances, 2016, 6, 12953-12958.	1.7	8
42	Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets. Scientific Reports, 2015, 5, 14018.	1.6	167
43	Dynamic graphene filters for selective gas-water-oil separation. Scientific Reports, 2015, 5, 14321.	1.6	52
44	Highly Stable Operation of Metal Oxide Nanowire Transistors in Ambient Humidity, Water, Blood, and Oxygen. ACS Applied Materials & Interfaces, 2015, 7, 16296-16302.	4.0	21
45	Fabrication of controllable and stable In ₂ O ₃ nanowire transistors using an octadecylphosphonic acid self-assembled monolayer. Nanotechnology, 2015, 26, 145203.	1.3	8
46	Seamless lamination of a concave–convex architecture with single-layer graphene. Nanoscale, 2015, 7, 18138-18146.	2.8	1
47	Nanowire-based ternary transistor by threshold-voltage manipulation. Applied Physics Letters, 2014, 104, .	1.5	9
48	Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In ₂ O ₃) nanowire phase change random access memory. Applied Physics Letters, 2014, 104, 103510.	1.5	4
49	Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment. Applied Physics Letters, 2013, 103, .	1.5	22
50	Homogeneous and stable p-type doping of graphene by MeV electron beam-stimulated hybridization with ZnO thin films. Applied Physics Letters, 2013, 102, 053103.	1.5	15
51	Photostable Zn ₂ SnO ₄ Nanowire Transistors for Transparent Displays. ACS Nano, 2012, 6, 4912-4920.	7.3	41
52	Direct growth of SnO ₂ nanowires on WO _{<i>x</i>} thin films. Nanotechnology, 2012, 23, 485702.	1.3	1
53	Control of Semiconducting and Metallic Indium Oxide Nanowires. ACS Nano, 2011, 5, 3917-3922.	7.3	22
54	Controlled Growth of Related Defects on Oxide Nanowires. Journal of Nanoscience and Nanotechnology, 2011, 11, 7022-7026.	0.9	2

TAEKYUNG LIM

#	Article	IF	CITATIONS
55	A nanowire-based shift register for display scan drivers. Nanotechnology, 2011, 22, 405203.	1.3	3
56	Response to "Comment on â€~Threshold voltage control of oxide nanowire transistors using nitrogen plasma treatment'―[Appl. Phys. Lett. 98, 176101 (2011)]. Applied Physics Letters, 2011, 98, 176102.	1.5	0
57	Threshold voltage control of oxide nanowire transistors using nitrogen plasma treatment. Applied Physics Letters, 2010, 97, 203508.	1.5	16