Antony George

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6853823/publications.pdf

Version: 2024-02-01

236612 189595 2,677 66 25 50 citations h-index g-index papers 68 68 68 5174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano, 2014, 8, 1263-1272.	7. 3	534
2	An Atomically Layered InSe Avalanche Photodetector. Nano Letters, 2015, 15, 3048-3055.	4.5	253
3	Chemical Vapor Deposition of Monolayer Rhenium Disulfide (ReS ₂). Advanced Materials, 2015, 27, 4640-4648.	11.1	203
4	Surface functionalization of two-dimensional metal chalcogenides by Lewis acid–base chemistry. Nature Nanotechnology, 2016, 11, 465-471.	15.6	197
5	Optoelectronic Memory Using Two-Dimensional Materials. Nano Letters, 2015, 15, 259-265.	4.5	163
6	Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry. Nano Letters, 2014, 14, 1354-1361.	4.5	129
7	Nanoantenna-Enhanced Light–Matter Interaction in Atomically Thin WS ₂ . ACS Photonics, 2015, 2, 1260-1265.	3.2	114
8	Tailoring Photoluminescence from MoS ₂ Monolayers by Mie-Resonant Metasurfaces. ACS Photonics, 2019, 6, 1002-1009.	3.2	82
9	High optical quality of MoS ₂ monolayers grown by chemical vapor deposition. 2D Materials, 2020, 7, 015011.	2.0	76
10	Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nature Communications, 2020, 11, 2391.	5.8	73
11	All-optical polarization and amplitude modulation of second-harmonic generation in atomically thin semiconductors. Nature Photonics, 2021, 15, 837-842.	15.6	59
12	Giant persistent photoconductivity in monolayer MoS2 field-effect transistors. Npj 2D Materials and Applications, 2021, 5 , .	3.9	56
13	Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors. JPhys Materials, 2019, 2, 016001.	1.8	49
14	Inhibition of Lithium Dendrite Formation in Lithium Metal Batteries via Regulated Cation Transport through Ultrathin Subâ€Nanometer Porous Carbon Nanomembranes. Advanced Energy Materials, 2021, 11, 2100666.	10.2	45
15	Ternary Culn ₇ Se ₁₁ : Towards Ultra‶hin Layered Photodetectors and Photovoltaic Devices. Advanced Materials, 2014, 26, 7666-7672.	11.1	43
16	Low-Cost, Large-Area, Facile, and Rapid Fabrication of Aligned ZnO Nanowire Device Arrays. ACS Applied Materials & Device Arrays. ACS A	4.0	41
17	Hybrid Dielectric Metasurfaces for Enhancing Second-Harmonic Generation in Chemical Vapor Deposition Grown MoS ₂ Monolayers. ACS Photonics, 2021, 8, 218-227.	3.2	41
18	Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition. Materials Chemistry and Physics, 2010, 123, 634-638.	2.0	40

#	Article	IF	Citations
19	Scalable Transfer of Suspended Two-Dimensional Single Crystals. Nano Letters, 2015, 15, 5089-5097.	4.5	38
20	1D <i>p–n</i> Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by Oneâ€Pot Chemical Vapor Deposition Synthesis. Advanced Functional Materials, 2021, 31, 2101086.	7.8	38
21	Nanostructured TiO ₂ Anatase Micropatterned Three-Dimensional Electrodes for High-Performance Li-lon Batteries. Journal of Physical Chemistry C, 2013, 117, 19809-19815.	1.5	34
22	Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism. Beilstein Journal of Nanotechnology, 2012, 3, 507-512.	1.5	33
23	Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors. Advanced Materials, 2020, 32, e2003826.	11.1	31
24	Large Area Resistâ€Free Soft Lithographic Patterning of Graphene. Small, 2013, 9, 711-715.	5.2	28
25	2D van der Waals Heterojunction of Organic and Inorganic Monolayers for High Responsivity Phototransistors. Advanced Functional Materials, 2021, 31, 2105444.	7.8	28
26	Nanoscale Patterning of Organosilane Molecular Thin Films from the Gas Phase and Its Applications: Fabrication of Multifunctional Surfaces and Large Area Molecular Templates for Site-Selective Material Deposition. Langmuir, 2012, 28, 3045-3052.	1.6	25
27	Lateral heterostructures of two-dimensional materials by electron-beam induced stitching. Carbon, 2018, 128, 106-116.	5.4	20
28	Controlling second-harmonic diffraction by nano-patterning MoS<i/> ₂ monolayers. Optics Express, 2019, 27, 35475.	1.7	20
29	Nanopatterning from the Gas Phase: High Resolution Soft Lithographic Patterning of Organosilane Thin Films. Langmuir, 2009, 25, 13298-13301.	1.6	17
30	Energy-Level Alignment at Interfaces between Transition-Metal Dichalcogenide Monolayers and Metal Electrodes Studied with Kelvin Probe Force Microscopy. Journal of Physical Chemistry C, 2021, 125, 13551-13559.	1.5	16
31	Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>l:m<mark>1:1</mark><td>nl:msub></td></td></mml:mn></mml:msub></mml:math>	l:m <mark>1:1</mark> <td>nl:msub></td>	nl:msub>
32	Facile Resistâ€Free Nanopatterning of Monolayers of MoS ₂ by Focused Ionâ€Beam Milling. Advanced Materials Interfaces, 2020, 7, 2000858.	1.9	14
33	Patterning Functional Materials Using Channel Diffused Plasma-Etched Self-Assembled Monolayer Templates. Langmuir, 2011, 27, 12235-12242.	1.6	13
34	Concentration Dependence on the Shape and Size of Sol–Gel-Derived Yttria-Stabilized Zirconia Ceramic Features by Soft Lithographic Patterning. Langmuir, 2012, 28, 15111-15117.	1.6	12
35	2D material integrated macroporous electrodes for Li-ion batteries. RSC Advances, 2017, 7, 32737-32742.	1.7	12
36	Micro and nanopatterning of functional materials on flexible plastic substrates via site-selective surface modification using oxygen plasma. Journal of Materials Chemistry, 2012, 22, 328-332.	6.7	11

#	Article	IF	Citations
37	Optically Triggered Control of the Charge Carrier Density in Chemically Functionalized Graphene Field Effect Transistors. Chemistry - A European Journal, 2020, 26, 6473-6478.	1.7	10
38	Synergy of Photoinduced Force Microscopy and Tip-Enhanced Raman Spectroscopy—A Correlative Study on MoS ₂ . ACS Photonics, 2019, 6, 1191-1198.	3.2	9
39	Nanopatterning of Functional Materials by Gas Phase Pattern Deposition of Self-Assembled Molecular Thin Films in Combination with Electrodeposition. Langmuir, 2011, 27, 12760-12768.	1.6	8
40	Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Masks. Advanced Functional Materials, 2014, 24, 6853-6861.	7.8	8
41	Sub-50 nm patterning of functional oxides by soft lithographic edge printing. Journal of Materials Chemistry, 2012, 22, 9501.	6.7	7
42	Electrodeposition in Capillaries: Bottom-up Micro- and Nanopatterning of Functional Materials on Conductive Substrates. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3666-3672.	4.0	5
43	Electrodeposition of micropatterned Ni Pt multilayers and segmented Ni Pt Ni nanowires. Electrochimica Acta, 2012, 81, 123-128.	2.6	5
44	Tuning exciton recombination rates in doped transition metal dichalcogenides. Optical Materials: X, 2021, 12, 100097.	0.3	5
45	Wafer scale synthesis of organic semiconductor nanosheets for van der Waals heterojunction devices. Npj 2D Materials and Applications, 2021, 5, .	3.9	5
46	Enabling Ultrasensitive Photo-detection Through Control of Interface Properties in Molybdenum Disulfide Atomic Layers. Scientific Reports, 2016, 6, 39465.	1.6	4
47	Tunable friction of monolayer MoS2 by control of interfacial chemistry. Extreme Mechanics Letters, 2020, 41, 100996.	2.0	3
48	Plowing-induced nanoexfoliation of mono- and multilayer MoS2 surfaces. Physical Review Materials, 2020, 4, .	0.9	2
49	Tuning nanowire lasers <i>via</i> hybridization with two-dimensional materials. Nanoscale, 2022, 14, 6822-6829.	2.8	2
50	Scanning-Probe-Induced Assembling of Gold Striations on Mono- and Bi-Layered MoS2 on SiO2. MRS Advances, 2020, 5, 2201-2207.	0.5	1
51	Exploiting channeling in Helium Ion Microscopy. Microscopy and Microanalysis, 2012, 18, 806-807.	0.2	0
52	Nanoantenna-enhanced light-matter interaction in atomically thin WS2., 2015,,.		0
53	Enhancement of light-matter interaction in MoS <inf>2</inf> monolayers by resonant nanoparticles., 2016,,.		0
54	Emission enhancement from MoS ₂ monolayers with silicon nanoantennas., 2017,,.		0

#	Article	IF	CITATIONS
55	Nanostructured MoS2 Monolayers for Spatial Control of Second-Harmonic Generation. , 2019, , .		0
56	Comparative Study of High Order Harmonic Generation in Monolayer-Thick Semiconductors. , 2019, , .		0
57	Integrated Photonics: Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors (Adv. Mater. 47/2020). Advanced Materials, 2020, 32, 2070354.	11.1	0
58	Second Harmonic Generation in monolayer WS2 with double resonant Bragg-Cavities. , 2021, , .		0
59	Scalable Integrated Waveguide with CVD-Grown MoS2 and WS2 Monolayers on Exposed-Core Fibers. , 2021, , .		O
60	Lateral Heterostructures: 1D <i>p–n</i> Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by Oneâ€Pot Chemical Vapor Deposition Synthesis (Adv. Funct. Mater. 27/2021). Advanced Functional Materials, 2021, 31, 2170198.	7.8	0
61	Semiconducting 2D-Materials: nano-sandbox for fundamental physics and new platform for optical coatings, light emission and quantum light sources. , 2019, , .		0
62	Second-Harmonic Diffraction from Periodically Structured MoS2 Monolayer., 2019,,.		0
63	Valley-based directional emission controlled by plasmonic nanostructure . , 2020, , .		0
64	Experimental Investigation of the Nature of Chiral Light Emission at the K/K´ Valleys of Monolayer Molybdenum Disulfide Using its Interaction with Gold Nanoparticles. , $2021, \ldots$		0
65	Second-Harmonic Generation in Directly-Grown MoS2 Monolayers on Exposed-Core Fibers. , 2021, , .		0
66	Valley-selective directional emission enabled by a plasmonic nanoantenna. , 2021, , .		0