Maowei Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6853721/publications.pdf Version: 2024-02-01

Μλοωει Ημ

#	Article	IF	CITATIONS
1	Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage. ACS Energy Letters, 2019, 4, 2220-2240.	8.8	327
2	Unprecedented Capacity and Stability of Ammonium Ferrocyanide Catholyte in pH Neutral Aqueous Redox Flow Batteries. Joule, 2019, 3, 149-163.	11.7	184
3	A pHâ€Neutral, Metalâ€Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. Angewandte Chemie - International Edition, 2019, 58, 16629-16636.	7.2	128
4	Electrochemical Dinitrogen Reduction to Ammonia by Mo ₂ N: Catalysis or Decomposition?. ACS Energy Letters, 2019, 4, 1053-1054.	8.8	114
5	High-performance solar flow battery powered by a perovskite/silicon tandem solar cell. Nature Materials, 2020, 19, 1326-1331.	13.3	90
6	A 1.51 V pH neutral redox flow battery towards scalable energy storage. Journal of Materials Chemistry A, 2019, 7, 9130-9136.	5.2	69
7	Nickelâ€Catalyzed Electrochemical C(sp ³)â^'C(sp ²) Crossâ€Coupling Reactions of Benzyl Trifluoroborate and Organic Halides**. Angewandte Chemie - International Edition, 2021, 60, 6107-6116.	7.2	67
8	A pHâ€Neutral, Metalâ€Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. Angewandte Chemie, 2019, 131, 16782-16789.	1.6	63
9	Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Holeâ€Transporting Material with Improved Performance and Stability. ChemSusChem, 2017, 10, 1838-1845.	3.6	54
10	A Stable, Low Permeable TEMPO Catholyte for Aqueous Total Organic Redox Flow Batteries. Advanced Energy Materials, 2022, 12, .	10.2	40
11	Mechanistic insights of cycling stability of ferrocene catholytes in aqueous redox flow batteries. Energy and Environmental Science, 2022, 15, 1315-1324.	15.6	32
12	Efficient and Stable Dye-Sensitized Solar Cells Based on a Tetradentate Copper(II/I) Redox Mediator. ACS Applied Materials & Interfaces, 2018, 10, 30409-30416.	4.0	31
13	High-efficiency perovskite solar cells employing a conjugated donor–acceptor co-polymer as a hole-transporting material. RSC Advances, 2017, 7, 27189-27197.	1.7	27
14	Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt. Science China Chemistry, 2018, 61, 172-179.	4.2	20
15	An Efficient Viologen-Based Electron Donor to Nitrogenase. Biochemistry, 2019, 58, 4590-4595.	1.2	17
16	Nickelâ€Catalyzed Electrochemical C(sp 3)â^'C(sp 2) Crossâ€Coupling Reactions of Benzyl Trifluoroborate and Organic Halides**. Angewandte Chemie, 2021, 133, 6172-6181.	1.6	17
17	Fine-tuning the coordination atoms of copper redox mediators: an effective strategy for boosting the photovoltage of dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 12808-12814.	5.2	12
18	Materials challenges of aqueous redox flow batteries. MRS Energy & Sustainability, 2022, 9, 1-12.	1.3	11

N /		
	AOWEI	

#	Article	IF	CITATIONS
19	Low-cost solution-processed digenite Cu ₉ S ₅ counter electrode for dye-sensitized solar cells. RSC Advances, 2017, 7, 38452-38457.	1.7	6
20	Tailoring electron transfer pathway for photocatalytic N ₂ -to-NH ₃ reduction in a CdS quantum dots-nitrogenase system. Sustainable Energy and Fuels, 2022, 6, 2256-2263.	2.5	6
21	A Stable, Low Permeable TEMPO Catholyte for Aqueous Total Organic Redox Flow Batteries (Adv.) Tj ETQq1 1 0.	784314 rg 10.2	;BT ₂ /Overlock
22	An Energyâ€Dense, Powerful, Robust Bipolar Zinc–Ferrocene Redoxâ€Flow Battery. Angewandte Chemie, 2022, 134, .	1.6	1