Sarah L Veatch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6853646/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Estimating the localization spread function of static single-molecule localization microscopy images. Biophysical Journal, 2022, 121, 2906-2920.	0.2	4
2	SMAUG: Analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods, 2021, 193, 16-26.	1.9	57
3	Critical Phenomena in Plasma Membrane Organization and Function. Annual Review of Physical Chemistry, 2021, 72, 51-72.	4.8	42
4	Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Science Signaling, 2021, 14, .	1.6	67
5	A mean shift algorithm for drift correction in localization microscopy. Biophysical Reports, 2021, 1, 100008.	0.7	10
6	Surface densities prewet a near-critical membrane. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
7	The Membrane "Pull―That Balances Metabolism's "Push―in Lipid Homeostasis. Biophysical Journal, 2020, 119, 887-889.	0.2	1
8	Ubiquitin ligase SMURF2 enhances epidermal growth factor receptor stability and tyrosine-kinase inhibitor resistance. Journal of Biological Chemistry, 2020, 295, 12661-12673.	1.6	10
9	Probing Neuronal Nuclear Pore Complexes Using Single Molecule Localization Microscopy. Microscopy and Microanalysis, 2020, 26, 1034-1035.	0.2	0
10	Synergistic factors control kinase–phosphatase organizationÂin B-cells engaged with supported bilayers. Molecular Biology of the Cell, 2020, 31, 667-682.	0.9	12
11	Criticality of plasma membrane lipids reflects activation state of macrophage cells. Journal of the Royal Society Interface, 2020, 17, 20190803.	1.5	15
12	Probing the Relationship between Cholesterol Concentration and Chemical Potential in Model Membranes. Biophysical Journal, 2020, 118, 229a.	0.2	0
13	Loss of PTEN promotes formation of signaling-capable clathrin-coated pits. Journal of Cell Science, 2018, 131, .	1.2	34
14	Interactions of amyloid-β peptides on lipid bilayer studied by single molecule imaging and tracking. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1616-1624.	1.4	26
15	Ion channels can be allosterically regulated by membrane domains near a de-mixing critical point. Journal of General Physiology, 2018, 150, 1769-1777.	0.9	18
16	Critical Lipidomics: The Consequences of Lipid Miscibility in Biological Membranes. , 2018, , 141-168.		6
17	Interactions of Plasma Membrane Criticality and GABAA Receptor Gating. Biophysical Journal, 2018, 114, 611a.	0.2	0
18	Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability. Methods in Enzymology, 2018, 603, 129-150.	0.4	33

#	Article	IF	CITATIONS
19	Beta-1 Integrin Association with Ordered Membrane Domains is Dependent on their Activation State. Biophysical Journal, 2018, 114, 380a.	0.2	0
20	Clathrin polymerization exhibits high mechano-geometric sensitivity. Soft Matter, 2017, 13, 1455-1462.	1.2	13
21	Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane. Chemical Reviews, 2017, 117, 7457-7477.	23.0	141
22	Chemoselective ratiometric imaging of protein S-sulfenylation. Chemical Communications, 2017, 53, 7385-7388.	2.2	11
23	Miscibility Transition Temperature Scales with Growth Temperature in a Zebrafish Cell Line. Biophysical Journal, 2017, 113, 1212-1222.	0.2	53
24	Dithiothreitol Raises Transition Temperatures in Giant Plasma Membrane Vesicles. Biophysical Journal, 2017, 112, 519a.	0.2	4
25	Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. ELife, 2017, 6, .	2.8	186
26	Spot size variation FCS in simulations of the 2D Ising model. Journal Physics D: Applied Physics, 2016, 49, 214001.	1.3	13
27	Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling. Molecular Biology of the Cell, 2016, 27, 3645-3658.	0.9	41
28	The Continuing Mystery of Lipid Rafts. Journal of Molecular Biology, 2016, 428, 4749-4764.	2.0	235
29	Conditions that Stabilize Membrane Domains Also Antagonize n -Alcohol Anesthesia. Biophysical Journal, 2016, 111, 537-545.	0.2	35
30	Visualization of HIV-1 Gag Binding to Giant Unilamellar Vesicle (GUV) Membranes. Journal of Visualized Experiments, 2016, , .	0.2	2
31	Direct Observation of Ordered and Disordered Membrane Domains in B Cell Plasma Membranes using Multi-Color Super-Resolution Fluorescence Microscopy and Application to B Cell Receptor Signaling. Biophysical Journal, 2016, 110, 580a.	0.2	0
32	Membrane Transition Temperature Determines Cisplatin Response. PLoS ONE, 2015, 10, e0140925.	1.1	13
33	Basic Motifs Target PSGL-1, CD43, and CD44 to Plasma Membrane Sites Where HIV-1 Assembles. Journal of Virology, 2015, 89, 454-467.	1.5	24
34	Phosphatidylinositol-(4,5)-Bisphosphate Acyl Chains Differentiate Membrane Binding of HIV-1 Gag from That of the Phospholipase Cδ1 Pleckstrin Homology Domain. Journal of Virology, 2015, 89, 7861-7873.	1.5	28
35	Plasma Membrane Vesicle Critical Temperature Scales with Growth Temperature in a Zebrafish Cell Line. Biophysical Journal, 2015, 108, 19a.	0.2	0
36	Steady-state cross-correlations for live two-colour super-resolution localization data sets. Nature Communications, 2015, 6, 7347.	5.8	59

#	Article	IF	CITATIONS
37	Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles. PLoS ONE, 2015, 10, e0137741.	1.1	43
38	Dimerization of mammalian kinesin-3 motors results in superprocessive motion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5562-5567.	3.3	164
39	Farâ€Red Organic Fluorophores Contain a Fluorescent Impurity. ChemPhysChem, 2014, 15, 2240-2246.	1.0	22
40	Oxygen Depletion Speeds and Simplifies Diffusion in HeLa Cells. Biophysical Journal, 2014, 107, 1873-1884.	0.2	16
41	Cell Cycle Phase Determines Critical Temperature in Plasma Membrane Vesicles. Biophysical Journal, 2014, 106, 94a.	0.2	Ο
42	Multi-Color, Live Super-Resolution Microscopy Reveals the Timescale and Potential of Mean Force for Co-Clustering Between the B cell Receptor and Lyn Kinase. Biophysical Journal, 2014, 106, 509a.	0.2	0
43	Adhesion Stabilizes Robust Lipid Heterogeneity in Supercritical Membranes at Physiological Temperature. Biophysical Journal, 2013, 104, 825-834.	0.2	73
44	Distinct Stages of Stimulated FcεRI Receptor Clustering and Immobilization Are Identified through Superresolution Imaging. Biophysical Journal, 2013, 105, 2343-2354.	0.2	61
45	Liquid General Anesthetics Lower Critical Temperatures in Plasma Membrane Vesicles. Biophysical Journal, 2013, 105, 2751-2759.	0.2	103
46	A Hypsochromic Shift Observed in Far-Red Cyanine Dyes Leads to Artifacts in Quantitative Super-Resolution Imaging. Biophysical Journal, 2013, 104, 668a.	0.2	0
47	Quantifying the Effect of BCR Clustering on Plasma Membrane Organization. Biophysical Journal, 2013, 104, 246a.	0.2	0
48	Roles Played by Capsid-Dependent Induction of Membrane Curvature and Gag-ESCRT Interactions in Tetherin Recruitment to HIV-1 Assembly Sites. Journal of Virology, 2013, 87, 4650-4664.	1.5	28
49	Ezrin Tunes the Magnitude of Humoral Immunity. Journal of Immunology, 2013, 191, 4048-4058.	0.4	30
50	Quantitative Nanoscale Analysis of IgE-FcεRI Clustering and Coupling to Early Signaling Proteins. Journal of Physical Chemistry B, 2012, 116, 6923-6935.	1.2	35
51	Critical Casimir Forces in Cellular Membranes. Physical Review Letters, 2012, 109, 138101.	2.9	104
52	Molecular mechanisms of spontaneous and directed mast cell motility. Journal of Leukocyte Biology, 2012, 92, 1029-1041.	1.5	22
53	Using Super-Resolution Fluorescence Localization Imaging to Probe Raft Hetergeneity in Fixed and Live Cells. Biophysical Journal, 2012, 102, 83a-84a.	0.2	0
54	Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting. PLoS ONE, 2012, 7, e31457.	1.1	261

#	Article	IF	CITATIONS
55	Minimal Model of Plasma Membrane Heterogeneity Requires Coupling Cortical Actin to Criticality. Biophysical Journal, 2011, 100, 1668-1677.	0.2	172
56	Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nature Methods, 2011, 8, 969-975.	9.0	526
57	Nano-Scale Spatial Organization of Plasma Membrane Revealed by Pair-Correlation Analysis. Biophysical Journal, 2011, 100, 350a.	0.2	0
58	An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 53-63.	1.4	257
59	Roles for SH2 and SH3 domains in Lyn kinase association with activated FcÎμRI in RBL mast cells revealed by patterned surface analysis. Journal of Structural Biology, 2009, 168, 161-167.	1.3	13
60	Lipids out of order. Nature Chemical Biology, 2008, 4, 225-226.	3.9	3
61	Line Tensions, Correlation Lengths, and Critical Exponents in Lipid Membranes Near Critical Points. Biophysical Journal, 2008, 95, 236-246.	0.2	305
62	Critical Fluctuations in Plasma Membrane Vesicles. ACS Chemical Biology, 2008, 3, 287-293.	1.6	420
63	Critical fluctuations in domain-forming lipid mixtures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17650-17655.	3.3	408
64	From small fluctuations to large-scale phase separation: Lateral organization in model membranes containing cholesterol. Seminars in Cell and Developmental Biology, 2007, 18, 573-582.	2.3	42
65	Electro-Formation and Fluorescence Microscopy of Giant Vesicles With Coexisting Liquid Phases. Methods in Molecular Biology, 2007, 398, 59-72.	0.4	36
66	Fluorescent Probes Alter Miscibility Phase Boundaries in Ternary Vesicles. Journal of Physical Chemistry B, 2007, 111, 502-504.	1.2	91
67	Diffusion of Liquid Domains in Lipid Bilayer Membranes. Journal of Physical Chemistry B, 2007, 111, 3328-3331.	1.2	247
68	Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. Journal of Leukocyte Biology, 2006, 80, 1563-1574.	1.5	93
69	Closed-Loop Miscibility Gap and Quantitative Tie-Lines in Ternary Membranes Containing Diphytanoyl PC. Biophysical Journal, 2006, 90, 4428-4436.	0.2	188
70	Seeing spots: Complex phase behavior in simple membranes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 172-185.	1.9	677
71	Sterol Structure Determines Miscibility versus Melting Transitions in Lipid Vesicles. Biophysical Journal, 2005, 89, 1760-1768.	0.2	137
72	Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin. Physical Review Letters, 2005, 94, 148101.	2.9	501

#	Article	IF	CITATIONS
73	Liquid Domains in Vesicles Investigated by NMR and Fluorescence Microscopy. Biophysical Journal, 2004, 86, 2910-2922.	0.2	429
74	Nonequilibrium Behavior in Supported Lipid Membranes Containing Cholesterol. Biophysical Journal, 2004, 86, 2942-2950.	0.2	156
75	Separation of Liquid Phases in Giant Vesicles of Ternary Mixtures of Phospholipids and Cholesterol. Biophysical Journal, 2003, 85, 3074-3083.	0.2	1,313
76	A Closer Look at the Canonical †Raft Mixture' in Model Membrane Studies. Biophysical Journal, 2003, 84, 725-726.	0.2	118
77	On the Binding Preference of Human Groups IIA and X Phospholipases A2 for Membranes with Anionic Phospholipids. Journal of Biological Chemistry, 2002, 277, 48523-48534.	1.6	116
78	Organization in Lipid Membranes Containing Cholesterol. Physical Review Letters, 2002, 89, 268101.	2.9	609