
Joana Almaça

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6853403/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneity of Diabetes: Î ² -Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care, 2022, 45, 3-22.	8.6	14
2	Pericyte Control of Blood Flow in Intraocular Islet Grafts Impacts Clucose Homeostasis in Mice. Diabetes, 2022, 71, 1679-1693.	0.6	10
3	Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E133-E144.	3.5	3
4	Pancreatic β-Cells Communicate With Vagal Sensory Neurons. Gastroenterology, 2021, 160, 875-888.e11.	1.3	47
5	SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in Î ² Cells. Cell Metabolism, 2020, 32, 1028-1040.e4.	16.2	148
6	Beta cell dysfunction in diabetes: the islet microenvironment as an unusual suspect. Diabetologia, 2020, 63, 2076-2085.	6.3	48
7	Islet pericytes convert into profibrotic myofibroblasts in a mouse model of islet vascular fibrosis. Diabetologia, 2020, 63, 1564-1575.	6.3	23
8	Secretory Functions of Macrophages in the Human Pancreatic Islet Are Regulated by Endogenous Purinergic Signaling. Diabetes, 2020, 69, 1206-1218.	0.6	29
9	Blood Flow in the Pancreatic Islet: Not so Isolated Anymore. Diabetes, 2020, 69, 1336-1338.	0.6	14
10	Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nature Communications, 2020, 11, 3265.	12.8	34
11	Functional Characterization of the Human Islet Microvasculature Using Living Pancreas Slices. Frontiers in Endocrinology, 2020, 11, 602519.	3.5	11
12	Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis. JCI Insight, 2020, 5, .	5.0	53
13	Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nature Metabolism, 2019, 1, 1110-1126.	11.9	59
14	The Pericyte of the Pancreatic Islet Regulates Capillary Diameter and Local Blood Flow. Cell Metabolism, 2018, 27, 630-644.e4.	16.2	135
15	Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia, 2018, 61, 182-192.	6.3	74
16	Regulator of G-protein signaling Gbeta5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-7-34.	0.0	0
17	β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nature Communications, 2017, 8, 14295.	12.8	63
18	Confocal Imaging of Neuropeptide Y-pHluorin: A Technique to Visualize Insulin Granule Exocytosis in Intact Murine and Human Islets. Journal of Visualized Experiments, 2017, , .	0.3	7

Joana Almaça

#	Article	IF	CITATIONS
19	Regulator of Gâ€protein signaling Gβ5â€R7 is a crucial activator of muscarinic M3 receptorâ€stimulated insulin secretion. FASEB Journal, 2017, 31, 4734-4744.	0.5	13
20	Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells. Cell Reports, 2016, 17, 3281-3291.	6.4	146
21	Spatial and temporal coordination of insulin granule exocytosis in intact human pancreatic islets. Diabetologia, 2015, 58, 2810-2818.	6.3	30
22	Young capillary vessels rejuvenate aged pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17612-17617.	7.1	79
23	High-Content siRNA Screen Reveals Global ENaC Regulators and Potential Cystic Fibrosis Therapy Targets. Cell, 2013, 154, 1390-1400.	28.9	50
24	Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Archiv European Journal of Physiology, 2012, 463, 819-827.	2.8	14
25	Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells. Biological Chemistry, 2011, 392, 125-34.	2.5	56
26	Functional Genomics Assays to Study CFTR Traffic and ENaC Function. Methods in Molecular Biology, 2011, 742, 249-264.	0.9	19
27	ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Archiv European Journal of Physiology, 2010, 459, 485-497.	2.8	75
28	TMEM16 Proteins Produce Volume-regulated Chloride Currents That Are Reduced in Mice Lacking TMEM16A. Journal of Biological Chemistry, 2009, 284, 28571-28578.	3.4	159
29	Regulation of Clâ^' secretion by AMPK in vivo. Pflugers Archiv European Journal of Physiology, 2009, 457, 1071-1078.	2.8	32
30	AMPK controls epithelial Na+ channels through Nedd4-2 and causes an epithelial phenotype when mutated. Pflugers Archiv European Journal of Physiology, 2009, 458, 713-721.	2.8	64
31	Regulation of the Epithelial Na+ Channel by the Protein Kinase CK2. Journal of Biological Chemistry, 2008, 283, 13225-13232.	3.4	38
32	IADS, a Decomposition Product of DIDS Activates a Cation Conductance in <i>Xenopus</i> Oocytes and Human Erythrocytes: New Compound for the Diagnosis of Cystic Fibrosis. Cellular Physiology and Biochemistry, 2006, 18, 243-252.	1.6	13