Wang Yanyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6853164/publications.pdf

Version: 2024-02-01

		147801	206112
48	25,698	31	48
papers	citations	h-index	g-index
50	50	50	44658
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLoS Pathogens, 2022, 18, e1010270.	4.7	40
2	Herpes simplex virus protein UL56 inhibits cGAS-Mediated DNA sensing to evade antiviral immunity. , 2022, 1, 100014 .		6
3	SRP54 Negatively Regulates IFN-Beta Production and Antiviral Response by Targeting RIG-I and MDA5. Virologica Sinica, 2021, 36, 231-240.	3.0	4
4	Histone deacetylase 3 promotes innate antiviral immunity through deacetylation of TBK1. Protein and Cell, 2021, 12, 261-278.	11.0	18
5	SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cellular and Molecular Immunology, 2021, 18, 613-620.	10.5	143
6	SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication. Cell Discovery, 2021, 7, 38.	6.7	71
7	Capillary electrophoresis based on nucleic acid analysis for diagnosing inherited diseases. Clinical Chemistry and Laboratory Medicine, 2021, 59, 249-266.	2.3	5
8	FAM177A1 Inhibits IL-1β–Induced Signaling by Impairing TRAF6–Ubc13 Association. Journal of Immunology, 2021, 207, 3090-3097.	0.8	3
9	Ubiquitination of TLR3 by TRIM3 signals its ESCRT-mediated trafficking to the endolysosomes for innate antiviral response. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23707-23716.	7.1	21
10	Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients. Signal Transduction and Targeted Therapy, 2020, 5, 100.	17.1	101
11	A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579, 270-273.	27.8	17,004
12	Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Research, 2020, 30, 670-677.	12.0	194
13	Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes and Infections, 2020, 9, 386-389.	6.5	1,471
14	<scp>RNF</scp> 152 positively regulates <scp>TLR</scp> / <scp>IL</scp> â€1R signaling by enhancing MyD88 oligomerization. EMBO Reports, 2020, 21, e48860.	4.5	22
15	USP44 positively regulates innate immune response to DNA viruses through deubiquitinating MITA. PLoS Pathogens, 2020, 16, e1008178.	4.7	27
16	Human Cytomegalovirus Protein UL94 Targets MITA to Evade the Antiviral Immune Response. Journal of Virology, 2020, 94, .	3.4	25
17	YIPF5 Is Essential for Innate Immunity to DNA Virus and Facilitates COPII-Dependent STING Trafficking. Journal of Immunology, 2019, 203, 1560-1570.	0.8	44
18	Human cytomegalovirus protein UL42 antagonizes cGAS/MITA-mediated innate antiviral response. PLoS Pathogens, 2019, 15, e1007691.	4.7	44

#	Article	IF	CITATIONS
19	FAM64A positively regulates STAT3 activity to promote Th17 differentiation and colitis-associated carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10447-10452.	7.1	44
20	Human Cytomegalovirus DNA Polymerase Subunit UL44 Antagonizes Antiviral Immune Responses by Suppressing IRF3- and NF-κB-Mediated Transcription. Journal of Virology, 2019, 93, .	3.4	25
21	The Regulation of cGAS. Virologica Sinica, 2018, 33, 117-124.	3.0	15
22	TRIM27 mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis. Nature Communications, 2018, 9, 3441.	12.8	52
23	Human Cytomegalovirus Protein UL31 Inhibits DNA Sensing of cGAS to Mediate Immune Evasion. Cell Host and Microbe, 2018, 24, 69-80.e4.	11.0	84
24	Human Cytomegalovirus Tegument Protein UL82 Inhibits STING-Mediated Signaling to Evade Antiviral Immunity. Cell Host and Microbe, 2017, 21, 231-243.	11.0	162
25	PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation. PLoS Pathogens, 2017, 13, e1006648.	4.7	28
26	GPATCH3 negatively regulates RLR-mediated innate antiviral responses by disrupting the assembly of VISA signalosome. PLoS Pathogens, 2017, 13, e1006328.	4.7	26
27	iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA. PLoS Pathogens, 2017, 13, e1006693.	4.7	39
28	LSm14A Plays a Critical Role in Antiviral Immune Responses by Regulating MITA Level in a Cell-Specific Manner. Journal of Immunology, 2016, 196, 5101-5111.	0.8	34
29	PASD1 promotes STAT3 activity and tumor growth by inhibiting TC45-mediated dephosphorylation of STAT3 in the nucleus. Journal of Molecular Cell Biology, 2016, 8, 221-231.	3.3	13
30	The RNA-binding protein Mex3B is a coreceptor of Toll-like receptor 3 in innate antiviral response. Cell Research, 2016, 26, 288-303.	12.0	47
31	Autoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response. Journal of Molecular Cell Biology, 2016, 8, 31-43.	3.3	61
32	Adding to the STING. Immunity, 2014, 41, 871-873.	14.3	46
33	TRIM38 inhibits TNFα- and IL-1β–triggered NF-κB activation by mediating lysosome-dependent degradation of TAB2/3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1509-1514.	7.1	113
34	Viral suppression of innate immunity via spatial isolation of TBK1/IKKε from mitochondrial antiviral platform. Journal of Molecular Cell Biology, 2014, 6, 324-337.	3.3	92
35	The ER-Associated Protein ZDHHC1 Is a Positive Regulator of DNA Virus-Triggered, MITA/STING-Dependent Innate Immune Signaling. Cell Host and Microbe, 2014, 16, 450-461.	11.0	129
36	MITA/STING: A central and multifaceted mediator in innate immune response. Cytokine and Growth Factor Reviews, 2014, 25, 631-639.	7.2	83

#	Article	IF	CITATIONS
37	Heat shock cognate 71 (HSC71) regulates cellular antiviral response by impairing formation of VISA aggregates. Protein and Cell, 2013, 4, 373-382.	11.0	17
38	Innate immune responses to DNA viruses. Protein and Cell, 2013, 4, 1-7.	11.0	30
39	TRIM32 Protein Modulates Type I Interferon Induction and Cellular Antiviral Response by Targeting MITA/STING Protein for K63-linked Ubiquitination. Journal of Biological Chemistry, 2012, 287, 28646-28655.	3.4	313
40	Linear Ubiquitination of NEMO Brakes the Antiviral Response. Cell Host and Microbe, 2012, 12, 129-131.	11.0	15
41	Tripartite motif 8 (TRIM8) modulates TNFα- and IL-1β–triggered NF-κB activation by targeting TAK1 for K63-linked polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19341-19346.	7.1	159
42	Regulation of virus-triggered type I interferon signaling by cellular and viral proteins. Frontiers in Biology, 2010, 5, 12-31.	0.7	6
43	WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-I ^o B activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 815-820.	7.1	93
44	The E3 Ubiquitin Ligase RNF5 Targets Virus-Induced Signaling Adaptor for Ubiquitination and Degradation. Journal of Immunology, 2010, 184, 6249-6255.	0.8	147
45	The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of the Adaptor Protein MITA. Immunity, 2009, 30, 397-407.	14.3	378
46	The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity, 2008, 29, 538-550.	14.3	1,209
47	The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity, 2008, 29, 538-550.	14.3	753
48	VISA Is an Adapter Protein Required for Virus-Triggered IFN-Î ² Signaling. Molecular Cell, 2005, 19, 727-740.	9.7	1,656