Asher Pasha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6852601/publications.pdf

Version: 2024-02-01

		394286	501076
29	2,464 citations	19	28
papers	citations	h-index	g-index
38	38	38	3919
all docs	docs citations	times ranked	citing authors
un doco	does citations	times funce	oring autilors

#	Article	IF	CITATIONS
1	Evolutionary divergence in embryo and seed coat development of U's Triangle <i>Brassica</i> species illustrated by a spatiotemporal transcriptome atlas. New Phytologist, 2022, 233, 30-51.	3.5	16
2	A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC Plant Biology, 2021, 21, 121.	1.6	18
3	Gene co-expression analysis of tomato seed maturation reveals tissue-specific regulatory networks and hubs associated with the acquisition of desiccation tolerance and seed vigour. BMC Plant Biology, 2021, 21, 124.	1.6	15
4	Transcriptional landscapes of floral meristems in barley. Science Advances, 2021, 7, .	4.7	33
5	An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development. Plant Journal, 2021, 107, 287-302.	2.8	18
6	Innovation, conservation, and repurposing of gene function in root cell type development. Cell, 2021, 184, 3333-3348.e19.	13.5	48
7	Temporal Gene Expression in Apical Culms Shows Early Changes in Cell Wall Biosynthesis Genes in Sugarcane. Frontiers in Plant Science, 2021, 12, 736797.	1.7	1
8	Regulation of Cell Type-Specific Immunity Networks in Arabidopsis Roots. Plant Cell, 2020, 32, 2742-2762.	3.1	59
9	Araport Lives: An Updated Framework for Arabidopsis Bioinformatics. Plant Cell, 2020, 32, 2683-2686.	3.1	28
10	Light-responsive expression atlas reveals the effects of light quality and intensity in Kalancho $ ilde{A}$ « fedtschenkoi, a plant with crassulacean acid metabolism. GigaScience, 2020, 9, .	3.3	11
11	Expression Atlas of <i>Selaginella moellendorffii</i> Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots. Plant Cell, 2020, 32, 853-870.	3.1	39
12	Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum. Plant Cell, 2020, 32, 833-852.	3.1	60
13	An â€~ <scp>eFP</scp> â€6eq Browser' for visualizing and exploring <scp>RNA</scp> sequencing data. Plant Journal, 2019, 100, 641-654.	2.8	41
14	The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development. Plant Cell, 2019, 31, 2888-2911.	3.1	57
15	Proteome-wide, Structure-Based Prediction of Protein-Protein Interactions/New Molecular Interactions Viewer. Plant Physiology, 2019, 179, 1893-1907.	2.3	34
16	High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development. Plant Cell, 2019, 31, 974-992.	3.1	141
17	Tung Tree (Vernicia fordii) Genome Provides A Resource for Understanding Genome Evolution and Improved Oil Production. Genomics, Proteomics and Bioinformatics, 2019, 17, 558-575.	3.0	43
18	An updated gene atlas for maize reveals organâ€specific and stressâ€induced genes. Plant Journal, 2019, 97, 1154-1167.	2.8	114

#	Article	IF	CITATIONS
19	Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases. Scientific Data, 2019, 6, 190025.	2.4	17
20	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	6.0	768
21	Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in <i>Brachypodium distachyon</i> . New Phytologist, 2017, 215, 1009-1025.	3.5	108
22	Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in <i>Medicago truncatula</i> . Journal of Experimental Botany, 2017, 68, erw474.	2.4	40
23	ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. Plant Cell, 2017, 29, 1806-1821.	3.1	316
24	Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. Journal of Experimental Botany, 2017, 68, 2175-2185.	2.4	19
25	The developmental transcriptome atlas of the biofuel crop <i>Camelina sativa</i> . Plant Journal, 2016, 88, 879-894.	2.8	60
26	Gene Slider: sequence logo interactive data-visualization for education and research. Bioinformatics, 2016, 32, 3670-3672.	1.8	8
27	New <scp>BAR</scp> tools for mining expression data and exploring <i>Cis</i> â€elements in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 490-504.	2.8	75
28	NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nature Communications, 2016, 7, 13179.	5.8	147
29	Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways. Plant Cell, 2015, 27, tpc.15.00632.	3.1	116