
Anne M Bronikowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biology, 2013, 14, R28.	9.6	276
2	The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20645-20650.	7.1	260
3	Foraging in a variable environment: weather patterns and the behavioral ecology of baboons. Behavioral Ecology and Sociobiology, 1996, 39, 11-25.	1.4	245
4	Aging in the Natural World: Comparative Data Reveal Similar Mortality Patterns Across Primates. Science, 2011, 331, 1325-1328.	12.6	204
5	The aging baboon: Comparative demography in a non-human primate. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9591-9595.	7.1	181
6	Oxidative stress and life histories: unresolved issues and current needs. Ecology and Evolution, 2015, 5, 5745-5757.	1.9	169
7	THE EVOLUTIONARY ECOLOGY OF LIFE HISTORY VARIATION IN THE GARTER SNAKETHAMNOPHIS ELEGANS. Ecology, 1999, 80, 2314-2325.	3.2	145
8	EXPERIMENTAL EVIDENCE FOR THE ADAPTIVE EVOLUTION OF GROWTH RATE IN THE GARTER SNAKE THAMNOPHIS ELEGANS. Evolution; International Journal of Organic Evolution, 2000, 54, 1760-1767.	2.3	135
9	Reproductive aging patterns in primates reveal that humans are distinct. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13440-13445.	7.1	125
10	The emergence of longevous populations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7681-E7690.	7.1	119
11	Testing evolutionary theories of aging in wild populations. Trends in Ecology and Evolution, 2005, 20, 271-273.	8.7	115
12	The Primate Life History Database: a unique shared ecological data resource. Methods in Ecology and Evolution, 2010, 1, 199-211.	5.2	109
13	Low Demographic Variability in Wild Primate Populations: Fitness Impacts of Variation, Covariation, and Serial Correlation in Vital Rates. American Naturalist, 2011, 177, E14-E28.	2.1	91
14	Evolution of Senescence in Nature: Physiological Evolution in Populations of Garter Snake with Divergent Life Histories. American Naturalist, 2010, 175, 147-159.	2.1	89
15	Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart. Physiological Genomics, 2003, 12, 129-138.	2.3	88
16	An empirical test of evolutionary theories for reproductive senescence and reproductive effort in the garter snake Thamnophis elegans. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 943-950.	2.6	87
17	Open-field behavior of house mice selectively bred for high voluntary wheel-running. Behavior Genetics, 2001, 31, 309-316.	2.1	83
18	Decades of field data reveal that turtles senesce in the wild. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6502-6507	7.1	79

ANNE M BRONIKOWSKI

#	Article	IF	CITATIONS
19	Lifespan in captive baboons is heritable. Mechanisms of Ageing and Development, 2002, 123, 1461-1467.	4.6	75
20	Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biology and Evolution, 2018, 10, 2110-2129.	2.5	72
21	The effects of maternal corticosterone levels on offspring behavior in fast- and slow-growth garter snakes (Thamnophis elegans). Hormones and Behavior, 2009, 55, 24-32.	2.1	69
22	Testing the ?free radical theory of aging? hypothesis: physiological differences in long-lived and short-lived colubrid snakes. Aging Cell, 2007, 6, 395-404.	6.7	67
23	Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mechanisms of Ageing and Development, 2020, 191, 111316.	4.6	67
24	Female and male life tables for seven wild primate species. Scientific Data, 2016, 3, 160006.	5.3	66
25	The conundrum of human immune system "senescence― Mechanisms of Ageing and Development, 2020, 192, 111357.	4.6	64
26	The evolution of aging phenotypes in snakes: a review and synthesis with new data. Age, 2008, 30, 169-176.	3.0	61
27	A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences. BMC Genomics, 2010, 11, 694.	2.8	60
28	Rapid molecular evolution across amniotes of the IIS/TOR network. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7055-7060.	7.1	59
29	Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biology, 2011, 12, 406.	9.6	58
30	Evolutionary ecology of endocrineâ€mediated lifeâ€history variation in the garter snake <i>Thamnophis elegans</i> . Ecology, 2009, 90, 720-728.	3.2	55
31	Pleistocene and ecological effects on continentalâ€scale genetic differentiation in the bobcat (<i>Lynx) Tj ETQq1</i>	1 _{0,} 78431 3.9	.4ggBT /Ove
32	Corticosterone and pace of life in two life-history ecotypes of the garter snake Thamnophis elegans. General and Comparative Endocrinology, 2012, 175, 443-448.	1.8	52
33	The diversity of population responses to environmental change. Ecology Letters, 2019, 22, 342-353.	6.4	52
34	Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories. Ecology, 2011, 92, 1658-1671.	3.2	50
35	State-dependent physiological maintenance in a long-lived ectotherm, the painted turtle (<i>Chrysemys picta</i>). Journal of Experimental Biology, 2011, 214, 88-97.	1.7	47
36	The untapped potential of reptile biodiversity for understanding how and why animals age. Functional Ecology, 2020, 34, 38-54.	3.6	44

#	Article	IF	CITATIONS
37	The Evolutionary Ecology of Life History Variation in the Garter Snake Thamnophis elegans. Ecology, 1999, 80, 2314.	3.2	42
38	Developmental plasticity of immune defence in two life-history ecotypes of the garter snake, Thamnophis elegans - a common-environment experiment. Journal of Animal Ecology, 2011, 80, 431-437.	2.8	42
39	Dissecting molecular stress networks: identifying nodes of divergence between lifeâ€history phenotypes. Molecular Ecology, 2013, 22, 739-756.	3.9	42
40	POPULATION-DYNAMIC CONSEQUENCES OF PREDATOR-INDUCED LIFE HISTORY VARIATION IN THE GUPPY (POECILIA RETICULATA). Ecology, 2002, 83, 2194-2204.	3.2	41
41	Metabolism, Body Size and Life Span: A Case Study in Evolutionarily Divergent Populations of the Garter Snake (Thamnophis elegans). Integrative and Comparative Biology, 2010, 50, 880-887.	2.0	41
42	Sexâ€specific aging in animals: Perspective and future directions. Aging Cell, 2022, 21, e13542.	6.7	36
43	Evolution and Function of the Insulin and Insulin-like Signaling Network in Ectothermic Reptiles: Some Answers and More Questions. Integrative and Comparative Biology, 2016, 56, 171-184.	2.0	35
44	Geographic variation and within-individual correlations of physiological stress markers in a widespread reptile, the common garter snake (Thamnophis sirtalis). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 205, 68-76.	1.8	35
45	Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science, 2022, 376, 1459-1466.	12.6	34
46	Hormonal and metabolic responses to upper temperature extremes in divergent life-history ecotypes of a garter snake. Journal of Experimental Biology, 2016, 219, 2944-2954.	1.7	32
47	A proposal to sequence the genome of a garter snake (Thamnophis sirtalis). Standards in Genomic Sciences, 2011, 4, 257-270.	1.5	31
48	Physiological indices of stress in wild and captive garter snakes: Correlations, repeatability, and ecological variation. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 174, 11-17.	1.8	31
49	Rates of molecular evolution vary in vertebrates for insulin-like growth factor-1 (IGF-1), a pleiotropic locus that regulates life history traits. General and Comparative Endocrinology, 2012, 178, 164-173.	1.8	29
50	Effects of a novel climate on stress response and immune function in painted turtles (<i>Chrysemys) Tj ETQq0 0</i>	0 rgBT /Ον 1:2	erlgck 10 Tf
51	Complex Interplay of Body Condition, Life History, and Prevailing Environment Shapes Immune Defenses of Garter Snakes in the Wild. Physiological and Biochemical Zoology, 2013, 86, 547-558.	1.5	26
52	Developmental and Immediate Thermal Environments Shape Energetic Trade-Offs, Growth Efficiency, and Metabolic Rate in Divergent Life-History Ecotypes of the Garter Snake <i>Thamnophis elegans</i> . Physiological and Biochemical Zoology, 2015, 88, 550-563.	1.5	26
53	Age-Related Changes in Locomotor Performance Reveal a Similar Pattern for <i>Caenorhabditis elegans</i> , <i>Mus domesticus</i> , <i>Canis familiaris</i> , <i>Equus caballus</i> , and <i>Homo sapiens</i> . Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw136.	3.6	26

54Gene array profiling of large hypothalamic CNS regions in lactating and randomly cycling virgin mice.2.32454Molecular Brain Research, 2005, 139, 201-211.2.324

#	Article	IF	CITATIONS
55	Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories. General and Comparative Endocrinology, 2016, 233, 88-99.	1.8	22
56	Comparative cellular biogerontology: Where do we stand?. Experimental Gerontology, 2015, 71, 109-117.	2.8	20
57	Joint estimation of growth and survival from mark–recapture data to improve estimates of senescence in wild populations. Ecology, 2020, 101, e02877.	3.2	20
58	Female reproductive aging in seven primate species: Patterns and consequences. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117669119.	7.1	20
59	Survivorship of Aerially-Exposed Zebra Mussels (Dreissena polymorpha) under Laboratory Conditions. Journal of Freshwater Ecology, 1999, 14, 511-517.	1.2	19
60	Physiology at nearâ€critical temperatures, but not critical limits, varies between two lizard species that partition the thermal environment. Journal of Animal Ecology, 2017, 86, 1510-1522.	2.8	18
61	Immune variation during pregnancy suggests immune componentâ€specific costs of reproduction in a viviparous snake with disparate lifeâ€history strategies. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 513-522.	1.9	18
62	Amongâ€individual heterogeneity in maternal behaviour and physiology affects reproductive allocation and offspring lifeâ€history traits in the garter snake <i>Thamnophis elegans</i> . Oikos, 2018, 127, 705-718.	2.7	18
63	The utility of reptile blood transcriptomes in molecular ecology. Molecular Ecology Resources, 2020, 20, 308-317.	4.8	17
64	Merging the "Morphology–Performance–Fitness―Paradigm and Life-History Theory in the Eagle Lake Garter Snake Research Project. Integrative and Comparative Biology, 2017, 57, 423-435.	2.0	16
65	Surviving winter: Physiological regulation of energy balance in a temperate ectotherm entering and exiting brumation. General and Comparative Endocrinology, 2021, 307, 113758.	1.8	16
66	Mitochondrial divergence between slow- and fast-aging garter snakes. Experimental Gerontology, 2015, 71, 135-146.	2.8	15
67	Antioxidant Gene Expression in Active and Sedentary House Mice (Mus domesticus) Selected for High Voluntary Wheel-Running Behavior. Genetics, 2002, 161, 1763-1769.	2.9	15
68	CytochromebPhylogeny Does Not Match Subspecific Classification in the Western Terrestrial Garter Snake,Thamnophis elegans. Copeia, 2001, 2001, 508-513.	1.3	14
69	Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Experimental Gerontology, 2020, 137, 110967.	2.8	14
70	EXPERIMENTAL EVIDENCE FOR THE ADAPTIVE EVOLUTION OF GROWTH RATE IN THE GARTER SNAKE THAMNOPHIS ELEGANS. Evolution; International Journal of Organic Evolution, 2000, 54, 1760.	2.3	13
71	Vertical Transmission of <i>Hepatozoon</i> in the Garter Snake <i>Thamnophis elegans</i> . Journal of Wildlife Diseases, 2017, 53, 121-125.	0.8	13

Molecular stress pathways and the evolution of life histories in reptiles. , 2011, , 193-209.

13

ANNE M BRONIKOWSKI

#	Article	IF	CITATIONS
73	Effects of early nutritional stress on physiology, life-histories and their trade-offs in a model ectothermic vertebrate. Journal of Experimental Biology, 2019, 222, .	1.7	12
74	Gene expression profiling of gastrocnemius of "minimuscle―mice. Physiological Genomics, 2013, 45, 228-236.	2.3	11
75	Genetic background and thermal environment differentially influence the ontogeny of immune components during early life in an ectothermic vertebrate. Journal of Animal Ecology, 2020, 89, 1883-1894.	2.8	10
76	Influences of Diet and Family on Age of Maturation in Brown House Snakes, Lamprophis fuliginosus. Herpetologica, 2010, 66, 456-463.	0.4	8
77	Use of fieldâ€portable ultrasonography reveals differences in developmental phenology and maternal egg provisioning in two sympatric viviparous snakes. Ecology and Evolution, 2018, 8, 3330-3340.	1.9	7
78	Contrasting Patterns of Rapid Molecular Evolution within the <i>p53</i> Network across Mammal and Sauropsid Lineages. Genome Biology and Evolution, 2019, 11, 629-643.	2.5	7
79	Immunosenescence and its influence on reproduction in a long-lived vertebrate. Journal of Experimental Biology, 2020, 223, .	1.7	7
80	Current and timeâ€lagged effects of climate on innate immunity in two sympatric snake species. Ecology and Evolution, 2021, 11, 3239-3250.	1.9	7
81	Sex-specific growth, shape, and their impacts on the life history of a long-lived vertebrate. Evolutionary Ecology Research, 2018, 19, 639-657.	2.0	7
82	Report from the First Snake Genomics and Integrative Biology Meeting. Standards in Genomic Sciences, 2012, 7, 150-152.	1.5	4
83	Gene expression of components of the insulin/insulin-like signaling pathway in response to heat stress in the garter snake, Thamnophis elegans. Journal of the Iowa Academy of Science, 2014, 121, 1-4.	0.5	3
84	Over a decade of field physiology reveals life-history specific strategies to drought in garter snakes () Tj ETQq0 0 0 20212187.) rgBT /O 2.6	verlock 10 Tf 3
85	Joint estimation of growth and survival from mark–recapture data to improve estimates of senescence in wild populations: Reply. Ecology, 2022, 103, e03571.	3.2	2
86	Temperatureâ€dependence of metabolism and fuel selection from cells to whole organisms. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2022, 337, 199-205.	1.9	2
87	AGA2017: Evolutionary Quantitative Genetics in the Wild. Journal of Heredity, 2019, 110, 381-382.	2.4	0
88	Multiple Paternity in Garter Snakes With Evolutionarily Divergent Life Histories. Journal of Heredity, 2021, 112, 508-518.	2.4	0
89	Movement modeling and patterns of within- and among-individual behavioral variation across time scales in neonate garter snakes (Thamnophis elegans). Behavioral Ecology and Sociobiology, 2021, 75, 1.	1.4	0