Daniela Ungureanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6852340/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular thermal shift assay (CETSA) for determining the drug binding affinity using Ba/F3 clones stably expressing receptor pseudokinases. Methods in Enzymology, 2022, 667, 339-363.	1.0	2
2	New insights into the molecular mechanisms of ROR1, ROR2, and PTK7 signaling from the proteomics and pharmacological modulation of ROR1 interactome. Cellular and Molecular Life Sciences, 2022, 79, 276.	5.4	4
3	STRN-ALK rearranged pediatric malignant peritoneal mesothelioma – Functional testing of 527 cancer drugs in patient-derived cancer cells. Translational Oncology, 2021, 14, 101027.	3.7	9
4	Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. FASEB Journal, 2021, 35, .	0.5	0
5	Evaluating Targeted Therapies in Ovarian Cancer Metabolism: Novel Role for PCSK9 and Second Generation mTOR Inhibitors. Cancers, 2021, 13, 3727.	3.7	13
6	Glucocorticoids induce differentiation and chemoresistance in ovarian cancer by promoting ROR1-mediated stemness. Cell Death and Disease, 2020, 11, 790.	6.3	38
7	Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Molecular Cell, 2020, 79, 390-405.e7.	9.7	56
8	Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells, 2019, 8, 812.	4.1	30
9	Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting. Oncogene, 2019, 38, 3288-3300.	5.9	39
10	Interaction between <scp>ROR</scp> 1 and Mu <scp>SK</scp> activation complex in myogenic cells. FEBS Letters, 2018, 592, 434-445.	2.8	8
11	Expression Analysis of Platinum Sensitive and Resistant Epithelial Ovarian Cancer Patient Samples Reveals New Candidates for Targeted Therapies. Translational Oncology, 2018, 11, 1160-1170.	3.7	19
12	Targeting Wnt signaling pseudokinases in hematological cancers. European Journal of Haematology, 2018, 101, 457-465.	2.2	13
13	Targeting ROR1 identifies new treatment strategies in hematological cancers. Biochemical Society Transactions, 2017, 45, 457-464.	3.4	28
14	Identification and Characterization of JAK2 Pseudokinase Domain Small Molecule Binders. ACS Medicinal Chemistry Letters, 2017, 8, 618-621.	2.8	38
15	Crosstalk between ROR1 and BCR pathways defines novel treatment strategies in mantle cell lymphoma. Blood Advances, 2017, 1, 2257-2268.	5.2	25
16	ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Proceedings of the United States of America, 2015, 112, 4642-4647.	7.1	95
17	Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2). Journal of Biological Chemistry, 2015, 290, 27261-27270.	3.4	70
18	Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Biochemical Journal, 2014, 458, 395-405.	3.7	33

Daniela Ungureanu

#	Article	IF	CITATIONS
19	A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochemical Journal, 2014, 457, 323-334.	3.7	241
20	The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1835-1841.	2.3	19
21	Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nature Structural and Molecular Biology, 2014, 21, 579-584.	8.2	132
22	Analysis of steady-state Förster resonance energy transfer data by avoiding pitfalls: Interaction of JAK2 tyrosine kinase with N-methylanthraniloyl nucleotides. Analytical Biochemistry, 2013, 442, 213-222.	2.4	6
23	New insights into the structure and function of the pseudokinase domain in JAK2. Biochemical Society Transactions, 2013, 41, 1002-1007.	3.4	35
24	Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1. BMC Biochemistry, 2012, 13, 20.	4.4	23
25	Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nature Structural and Molecular Biology, 2012, 19, 754-759.	8.2	196
26	The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nature Structural and Molecular Biology, 2011, 18, 971-976.	8.2	237
27	Analysis of Jak2 Catalytic Function by Peptide Microarrays: The Role of the JH2 Domain and V617F Mutation. PLoS ONE, 2011, 6, e18522.	2.5	32
28	Sumoylation of <i>Drosophila</i> Transcription Factor STAT92E. Journal of Innate Immunity, 2010, 2, 618-624.	3.8	19
29	MAPK-induced Ser727 phosphorylation promotes SUMOylation of STAT1. Biochemical Journal, 2008, 409, 179-185.	3.7	39
30	SUMO-1 conjugation selectively modulates STAT1-mediated gene responses. Blood, 2005, 106, 224-226.	1.4	86
31	SLIM Trims STATs: Ubiquitin E3 Ligases Provide Insights for Specificity in the Regulation of Cytokine Signaling. Science Signaling, 2005, 2005, pe49-pe49.	3.6	22
32	PIAS proteins promote SUMO-1 conjugation to STAT1. Blood, 2003, 102, 3311-3313.	1.4	135
33	Regulation of Jak2 through the Ubiquitin-Proteasome Pathway Involves Phosphorylation of Jak2 on Y1007 and Interaction with SOCS-1. Molecular and Cellular Biology, 2002, 22, 3316-3326.	2.3	226
34	IL-15-IgG2b fusion protein accelerates and enhances a Th2 but not a Th1 immune responsein vivo, while IL-2-IgG2b fusion protein inhibits both. European Journal of Immunology, 1998, 28, 3312-3320.	2.9	26
35	Interleukin-15 protects from lethal apoptosis in vivo. Nature Medicine, 1997, 3, 1124-1128.	30.7	303