Pablo Ivan Nikel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851988/publications.pdf

Version: 2024-02-01

123 papers 7,038 citations

57758 44 h-index 71685 76 g-index

143 all docs

143 docs citations

times ranked

143

5001 citing authors

#	Article	IF	CITATIONS
1	Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism. Trends in Biotechnology, 2023, 41, 27-45.	9.3	10
2	Synthetic metabolism for biohalogenation. Current Opinion in Biotechnology, 2022, 74, 180-193.	6.6	25
3	Dual Effect: High NADH Levels Contribute to Efflux-Mediated Antibiotic Resistance but Drive Lethality Mediated by Reactive Oxygen Species. MBio, 2022, 13, e0243421.	4.1	12
4	Oligomerization engineering of the fluorinase enzyme leads to an active trimer that supports synthesis of fluorometabolites <i>inÂvitro</i> . Microbial Biotechnology, 2022, 15, 1622-1632.	4.2	7
5	Merging automation and fundamental discovery into the design–build–test–learn cycle of nontraditional microbes. Trends in Biotechnology, 2022, 40, 1148-1159.	9.3	24
6	Standardization of regulatory nodes for engineering heterologous gene expression: a feasibility study. Microbial Biotechnology, 2022, 15, 2250-2265.	4.2	8
7	Developing a CRISPRâ€assisted baseâ€editing system for genome engineering of <i>Pseudomonas chlororaphis</i> . Microbial Biotechnology, 2022, 15, 2324-2336.	4.2	10
8	A Nonconventional Archaeal Fluorinase Identified by In Silico Mining for Enhanced Fluorine Biocatalysis. ACS Catalysis, 2022, 12, 6570-6577.	11.2	20
9	Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nature Communications, 2022, 13 , .	12.8	39
10	Dynamic flux regulation for high-titer anthranilate production by plasmid-free, conditionally-auxotrophic strains of Pseudomonas putida. Metabolic Engineering, 2022, 73, 11-25.	7.0	16
11	Role of the <scp>CrcB</scp> transporter of <i>Pseudomonas putida</i> in the multiâ€level stress response elicited by mineral fluoride. Environmental Microbiology, 2022, 24, 5082-5104.	3.8	15
12	Highâ€throughput colorimetric assays optimized for detection of ketones and aldehydes produced by microbial cell factories. Microbial Biotechnology, 2022, 15, 2426-2438.	4.2	6
13	Engineering Native and Synthetic Pathways in <i>Pseudomonas putida</i> for the Production of Tailored Polyhydroxyalkanoates. Biotechnology Journal, 2021, 16, e2000165.	3 . 5	67
14	Rapid Genome Engineering of Pseudomonas Assisted by Fluorescent Markers and Tractable Curing of Plasmids. Bio-protocol, 2021, 11, e3917.	0.4	10
15	Reconfiguration of metabolic fluxes in <i>Pseudomonas putida</i> as a response to sub-lethal oxidative stress. ISME Journal, 2021, 15, 1751-1766.	9.8	79
16	Low CyaA expression and antiâ€cooperative binding of cAMP to CRP frames the scope of the cognate regulon of Pseudomonas putida. Environmental Microbiology, 2021, 23, 1732-1749.	3.8	4
17	<i>Pseudomonas taiwanensis</i> biofilms for continuous conversion of cyclohexanone in drip flow and rotating bed reactors. Engineering in Life Sciences, 2021, 21, 258-269.	3.6	5
18	Transcriptional control of 2,4â€dinitrotoluene degradation in <i>Burkholderia sp</i> . <scp>R34</scp> bears a regulatory patch that eases pathway evolution. Environmental Microbiology, 2021, 23, 2522-2531.	3.8	8

#	Article	IF	CITATIONS
19	Spatiotemporal Manipulation of the Mismatch Repair System of <i>Pseudomonas putida</i> Accelerates Phenotype Emergence. ACS Synthetic Biology, 2021, 10, 1214-1226.	3.8	11
20	Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. MSystems, 2021, 6, .	3.8	17
21	Towards robust <i>Pseudomonas</i> cell factories to harbour novel biosynthetic pathways. Essays in Biochemistry, 2021, 65, 319-336.	4.7	44
22	Highâ€throughput dilutionâ€based growth method enables timeâ€resolved exoâ€metabolomics of ⟨i⟩Pseudomonas putida⟨ i⟩ and ⟨i⟩Pseudomonas aeruginosa⟨ i⟩. Microbial Biotechnology, 2021, 14, 2214-2226.	4.2	14
23	Microbial cell factories: a biotechnology journey across species. Essays in Biochemistry, 2021, 65, 143-145.	4.7	1
24	Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A–dependent bioproduction in rewired Pseudomonas putida. Metabolic Engineering, 2021, 67, 373-386.	7.0	41
25	Combinatorial pathway balancing provides biosynthetic access to 2-fluoro-cis, cis-muconate in engineered Pseudomonas putida. Chem Catalysis, 2021, 1, 1234-1259.	6.1	19
26	Growth-coupled selection of synthetic modules to accelerate cell factory development. Nature Communications, 2021, 12, 5295.	12.8	35
27	Synthetic biology beyond borders. Microbial Biotechnology, 2021, 14, 2254-2256.	4.2	0
28	The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Advances in Microbial Physiology, 2021, 79, 25-88.	2.4	7
29	Physical decoupling of XylS/ <i>Pm</i> regulatory elements and conditional proteolysis enable precise control of gene expression in <i>Pseudomonas putida</i> Microbial Biotechnology, 2020, 13, 222-232.	4.2	54
30	Biochemistry, genetics and biotechnology of glycerol utilization in <i>Pseudomonas</i> species. Microbial Biotechnology, 2020, 13, 32-53.	4.2	76
31	Accelerated genome engineering of <i>Pseudomonas putida</i> by lâ€ <i>Sce</i> l―mediated recombination and <scp>CRISPR</scp> â€Cas9 counterselection. Microbial Biotechnology, 2020, 13, 233-249.	4.2	99
32	Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nature Communications, 2020, 11, 5294.	12.8	45
33	Elimination of GlnKAmtB affects serine biosynthesis and improves growth and stress tolerance of <i>Escherichia coli</i> under nutrient-rich conditions. FEMS Microbiology Letters, 2020, 367, .	1.8	4
34	Advanced metabolic engineering strategies for the development of sustainable microbial processes., 2020,, 225-246.		3
35	Industrial biotechnology of Pseudomonas putida: advances and prospects. Applied Microbiology and Biotechnology, 2020, 104, 7745-7766.	3.6	128
36	A fluoride-responsive genetic circuit enables in vivo biofluorination in engineered Pseudomonas putida. Nature Communications, 2020, 11, 5045.	12.8	60

#	Article	IF	CITATIONS
37	Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metabolic Engineering Communications, 2020, 10, e00126.	3.6	62
38	<scp>ArsH</scp> protects <i>Pseudomonas putida</i> from oxidative damage caused by exposure to arsenic. Environmental Microbiology, 2020, 22, 2230-2242.	3.8	28
39	Biotransformation of 2,4â€dinitrotoluene in a phototrophic coâ€culture of engineered <i>Synechococcus elongatus</i> and <i>Pseudomonas putida</i> Microbial Biotechnology, 2020, 13, 997-1011.	4.2	30
40	Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. ChemBioChem, 2020, 21, 2551-2571.	2.6	20
41	Pseudomonas putida. Trends in Microbiology, 2020, 28, 512-513.	7.7	52
42	Editorial: Synthetic Biology-Guided Metabolic Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 221.	4.1	3
43	Engineering Reduced-Genome Strains of Pseudomonas putida for Product Valorization. , 2020, , 69-93.		2
44	An expanded CRISPRi toolbox for tunable control of gene expression in <i>Pseudomonas putida</i> Microbial Biotechnology, 2020, 13, 368-385.	4.2	48
45	A SsrA/NIa-based Strategy for Post-Translational Regulation of Protein Levels in Gram-negative Bacteria. Bio-protocol, 2020, 10, e3688.	0.4	O
46	Chasing bacterial <i>chassis</i> for metabolic engineering: a perspective review from classical to nonâ€traditional microorganisms. Microbial Biotechnology, 2019, 12, 98-124.	4.2	193
47	Synthesis of Recoded Bacterial Genomes toward Bespoke Biocatalysis. Trends in Biotechnology, 2019, 37, 1036-1038.	9.3	3
48	Why Nature Chose Potassium. Journal of Molecular Evolution, 2019, 87, 271-288.	1.8	41
49	Nonâ€invasive, ratiometric determination of intracellular pH in Pseudomonas species using a novel genetically encoded indicator. Microbial Biotechnology, 2019, 12, 799-813.	4.2	23
50	Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnology Journal, 2019, 14, e1800439.	3.5	41
51	Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metabolic Engineering, 2019, 54, 200-211.	7.0	56
52	High-Performance Biocomputing in Synthetic Biology–Integrated Transcriptional and Metabolic Circuits. Frontiers in Bioengineering and Biotechnology, 2019, 7, 40.	4.1	34
53	Breaking the stateâ€ofâ€theâ€art in the chemical industry with newâ€toâ€Nature products <i>via</i> synthetic microbiology. Microbial Biotechnology, 2019, 12, 187-190.	4.2	22
54	Revolutionizing agriculture with synthetic biology. Nature Plants, 2019, 5, 1207-1210.	9.3	100

#	Article	IF	CITATIONS
55	In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions. Microbial Cell Factories, 2019, 18, 179.	4.0	23
56	The global regulator Crc orchestrates the metabolic robustness underlying oxidative stress resistance in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2019, 21, 898-912.	3.8	27
57	The <i>Synthetic Microbiology Caucus</i> : from abstract ideas to turning microbes into cellular machines and back. Microbial Biotechnology, 2019, 12, 5-7.	4.2	5
58	Evolving metabolism of 2,4â€dinitrotoluene triggers SOSâ€independent diversification of host cells. Environmental Microbiology, 2019, 21, 314-326.	3.8	13
59	Assessing Carbon Source-Dependent Phenotypic Variability in Pseudomonas putida. Methods in Molecular Biology, 2018, 1745, 287-301.	0.9	4
60	A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered <i>Escherichia coli</i> . ACS Synthetic Biology, 2018, 7, 2686-2697.	3.8	58
61	The Metabolic Redox Regime of Pseudomonas putida Tunes Its Evolvability toward Novel Xenobiotic Substrates. MBio, 2018, 9, .	4.1	51
62	Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metabolic Engineering, 2018, 50, 142-155.	7.0	338
63	Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. Advanced Biology, 2018, 2, 1800111.	3.0	46
64	Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria. Methods in Molecular Biology, 2018, 1772, 3-24.	0.9	3
65	Refactoring the Embden–Meyerhof–Parnas Pathway as a Whole of Portable GlucoBricks for Implantation of Glycolytic Modules in Gram-Negative Bacteria. ACS Synthetic Biology, 2017, 6, 793-805.	3.8	50
66	A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli. Applied and Environmental Microbiology, 2017, 83, .	3.1	22
67	Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 2017, 35, 845-866.	11.7	240
68	Unexpected functions of automatically annotated genes: a lesson learnt from <i>Bacillus subtilis</i> Environmental Microbiology, 2017, 19, 5-6.	3.8	1
69	Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors. Methods in Molecular Biology, 2017, 1498, 273-293.	0.9	23
70	Quantifying the Relative Importance of Phylogeny and Environmental Preferences As Drivers of Gene Content in Prokaryotic Microorganisms. Frontiers in Microbiology, 2016, 7, 433.	3.5	19
71	The <scp>RNA</scp> chaperone <scp>Hfq</scp> enables the environmental stress tolerance superâ€phenotype of <scp><i>P</i></scp> <i>seudomonas putida</i> . Environmental Microbiology, 2016, 18, 3309-3326.	3.8	25
72	A Metabolic Widget Adjusts the Phosphoenolpyruvate-Dependent Fructose Influx in Pseudomonas putida. MSystems, 2016, 1, .	3.8	28

#	Article	IF	Citations
73	From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Current Opinion in Chemical Biology, 2016, 34, 20-29.	6.1	199
74	Metabolic profile of Mycobacterium smegmatis reveals Mce4 proteins are relevant for cell wall lipid homeostasis. Metabolomics, $2016,12,1.$	3.0	8
75	Pyridine nucleotide transhydrogenases enable redox balance of <i>Pseudomonas putida </i> biodegradation of aromatic compounds. Environmental Microbiology, 2016, 18, 3565-3582.	3.8	58
76	The revisited genome of <i>Pseudomonas putida</i> KT2440 enlightens its value as a robust metabolic <i>chassis</i> . Environmental Microbiology, 2016, 18, 3403-3424.	3.8	270
77	Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria. Data in Brief, 2016, 6, 738-744.	1.0	17
78	Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metabolic Engineering, 2016, 33, 109-118.	7.0	103
79	The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations. Applied and Environmental Microbiology, 2016, 82, 244-254.	3.1	17
80	Systems and Synthetic Biology Approaches for Metabolic Engineering of Pseudomonas putida. , 2016, , 3-22.		3
81	Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microbial Cell Factories, 2015, 14, 201.	4.0	145
82	Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiology, 2015, 15, 202.	3.3	24
83	Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microbial Cell Factories, 2015, 14, 23.	4.0	142
84	Polyhydroxyalkanoates. Advances in Applied Microbiology, 2015, 93, 73-106.	2.4	60
85	Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways. Journal of Biological Chemistry, 2015, 290, 25920-25932.	3.4	269
86	Quantitative Physiology Approaches to Understand and Optimize Reducing Power Availability in Environmental Bacteria. Springer Protocols, 2015, , 39-70.	0.3	14
87	The Glycerol-Dependent Metabolic Persistence of Pseudomonas putida KT2440 Reflects the Regulatory Logic of the GlpR Repressor. MBio, 2015, 6, .	4.1	62
88	Metabolic and regulatory rearrangements underlying glycerol metabolism in <i><scp>P</scp>seudomonas putida</i> â€ <scp>KT</scp> 2440. Environmental Microbiology, 2014, 16, 239-254.	3.8	91
89	Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microbial Cell Factories, 2014, 13, 159.	4.0	199
90	Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. New Biotechnology, 2014, 31, 562-571.	4.4	62

#	Article	IF	Citations
91	The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environmental Microbiology, 2014, 16, 628-642.	3.8	63
92	Biotechnological domestication of pseudomonads using synthetic biology. Nature Reviews Microbiology, 2014, 12, 368-379.	28.6	332
93	The metabolic cost of flagellar motion in <scp><i>P</i></scp> <i>seudomonas putida</i> à€ <scp>KT</scp> 2440. Environmental Microbiology, 2014, 16, 291-303.	3.8	132
94	New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories. Frontiers in Bioengineering and Biotechnology, 2014, 2, 46.	4.1	85
95	Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microbial Cell Factories, 2013, 12, 50.	4.0	77
96	Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloprop-1-ene metabolism by <i>Pseudomonas pavonaceae</i> Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120377.	4.0	53
97	Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis. Microbiology (United Kingdom), 2013, 159, 259-268.	1.8	22
98	The <scp>E</scp> ntner– <scp>D</scp> oudoroff pathway empowers <i><scp>P</scp>seudomonas putida</i> â€ <scp>KT</scp> 2440 with a high tolerance to oxidative stress. Environmental Microbiology, 2013, 15, 1772-1785.	3.8	195
99	Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors. Journal of Biotechnology, 2013, 163, 143-154.	3.8	51
100	Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene. Metabolic Engineering, 2013, 15, 98-112.	7.0	93
101	Endogenous Stress Caused by Faulty Oxidation Reactions Fosters Evolution of 2,4-Dinitrotoluene-Degrading Bacteria. PLoS Genetics, 2013, 9, e1003764.	3.5	74
102	Transcriptomic fingerprinting of <i><scp>P</scp>seudomonas putida</i> under alternative physiological regimes. Environmental Microbiology Reports, 2013, 5, 883-891.	2.4	75
103	The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Research, 2013, 41, D666-D675.	14.5	556
104	Manipulation of the Anoxic Metabolism in Escherichia coli by ArcB Deletion Variants in the ArcBA Two-Component System. Applied and Environmental Microbiology, 2012, 78, 8784-8794.	3.1	15
105	ESCHERICHIA COLI REDOX MUTANTS AS MICROBIAL CELL FACTORIES FOR THE SYNTHESIS OF REDUCED BIOCHEMICALS. Computational and Structural Biotechnology Journal, 2012, 3, e201210019.	4.1	27
106	Metabolic engineering strategies of Pseudomonas putida KT2440 for biocatalysis under conditions with restricted oxygen supply. New Biotechnology, 2012, 29, S30.	4.4	0
107	Effects of Aeration on the Synthesis of Poly(3-Hydroxybutyrate) from Glycerol and Glucose in Recombinant <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2010, 76, 2036-2040.	3.1	66
108	Metabolic selective pressure stabilizes plasmids carrying biosynthetic genes for reduced biochemicals in Escherichia coli redox mutants. Applied Microbiology and Biotechnology, 2010, 88, 563-573.	3.6	12

#	Article	IF	Citations
109	Ethanol synthesis from glycerol by <i>Escherichia coli</i> redox mutants expressing <i>adhE</i> from <i>Leuconostoc mesenteroides</i> Journal of Applied Microbiology, 2010, 109, 492-504.	3.1	40
110	Redox driven metabolic tuning. Bioengineered Bugs, 2010, 1, 293-297.	1.7	7
111	Elimination of <scp>d </scp> -Lactate Synthesis Increases Poly(3-Hydroxybutyrate) and Ethanol Synthesis from Glycerol and Affects Cofactor Distribution in Recombinant <i>Escherichia coli </i> Environmental Microbiology, 2010, 76, 7400-7406.	3.1	25
112	Metabolic Flux Analysis of <i>Escherichia coli creB</i> and <i>arcA</i> Mutants Reveals Shared Control of Carbon Catabolism under Microaerobic Growth Conditions. Journal of Bacteriology, 2009, 191, 5538-5548.	2.2	46
113	Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures. Applied Microbiology and Biotechnology, 2008, 77, 1337-1343.	3.6	74
114	Modelling the freezing response of baker's yeast prestressed cells: a statistical approach. Journal of Applied Microbiology, 2008, 104, 716-727.	3.1	5
115	The Legacy of HfrH: Mutations in the Two-Component System CreBC Are Responsible for the Unusual Phenotype of an Escherichia coli arcA Mutant. Journal of Bacteriology, 2008, 190, 3404-3407.	2.2	21
116	ArcA Redox Mutants as a Source of Reduced Bioproducts. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 41-47.	1.0	13
117	<i>Escherichia coli arcA</i> Mutants: Metabolic Profile Characterization of Microaerobic Cultures using Glycerol as a Carbon Source. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 48-54.	1.0	48
118	Effects of Granule-Associated Protein PhaP on Glycerol-Dependent Growth and Polymer Production in Poly(3-Hydroxybutyrate)-Producing <i>Escherichia coli</i> Microbiology, 2007, 73, 7912-7916.	3.1	58
119	dye (arc) mutants: insights into an unexplained phenotype and its suppression by the synthesis of poly (3-hydroxybutyrate) in Escherichia coli recombinants. FEMS Microbiology Letters, 2006, 258, 55-60.	1.8	42
120	dye(arc) mutants: insights into an unexplained phenotype and its suppression by the synthesis of poly (3-hydroxybutyrate) in Escherichia colirecombinants. FEMS Microbiology Letters, 2006, 259, 332-332.	1.8	0
121	New Recombinant Escherichia coli Strain Tailored for the Production of Poly(3-Hydroxybutyrate) from Agroindustrial By-Products. Applied and Environmental Microbiology, 2006, 72, 3949-3954.	3.1	90
122	Poly(3-Hydroxybutyrate) Synthesis by Recombinant <i>Escherichia coli arcA</i> Mutants in Microaerobiosis. Applied and Environmental Microbiology, 2006, 72, 2614-2620.	3.1	70
123	Statistical optimization of a culture medium for biomass and poly(3-hydroxybutyrate) production by a recombinant Escherichia coli strain using agroindustrial byproducts. International Microbiology, 2005, 8, 243-50.	2.4	34