Jean-Paul Mosnier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851250/publications.pdf

Version: 2024-02-01

185998 174990 3,277 127 28 52 citations g-index h-index papers 130 130 130 2778 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Photoionization Cross-Sections of Carbon-Like N+ Near the K-Edge (390–440 eV). Atoms, 2021, 9, 27.	0.7	4
2	Special Issue "Interaction of Ionizing Photons with Atomic and Molecular Ions― Atoms, 2021, 9, 111.	0.7	0
3	The 5d-6p VUV Photoabsorption Spectrum of Bi+. Atoms, 2020, 8, 55.	0.7	2
4	Vibrationally and Spin-Orbit-Resolved Inner-Shell X-ray Absorption Spectroscopy of the NH+ Molecular Ion: Measurements and ab Initio Calculations. Atoms, 2020, 8, 67.	0.7	11
5	xmins:mmi="http://www.w3.org/1998/Math/MathML"> <mmi:mi>L</mmi:mi> -sheil photoabsorption of the molecular-ion series <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Si</mml:mi><mml:msup><mml:real mathvariant="normal">H<mml:mi><mml:mi>n</mml:mi></mml:mi></mml:real></mml:msup></mml:mrow><mml:mo>+</mml:mo>++><mml:mo>+</mml:mo>+>+++>++<td>mrow><mn /mml:msup</mn </td><td>nl:msub><mm ></mm </td></mml:math>	mrow> <mn /mml:msup</mn 	nl:msub> <mm ></mm

#	Article	IF	CITATIONS
19	In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 2014, 125, 131-138.	2.7	306
20	Inducing a Dielectric Barrier Discharge Plasma Within a Package. IEEE Transactions on Plasma Science, 2014, 42, 2368-2369.	0.6	16
21	Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sources Science and Technology, 2014, 23, 065033.	1.3	119
22	Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. Journal of Hospital Infection, 2014, 88, 162-169.	1.4	139
23	Cold Plasma in Modified Atmospheres for Post-harvest Treatment of Strawberries. Food and Bioprocess Technology, 2014, 7, 3045-3054.	2.6	147
24	Defect studies of thin ZnO films prepared by pulsed laser deposition. Journal of Physics: Conference Series, 2014, 505, 012021.	0.3	2
25	Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition. Journal of Alloys and Compounds, 2013, 580, S40-S43.	2.8	9
26	Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package. Journal Physics D: Applied Physics, 2013, 46, 035401.	1.3	37
27	Defect studies of ZnO films prepared by pulsed laser deposition on various substrates. Journal of Physics: Conference Series, 2013, 443, 012018.	0.3	1
28	Enhanced shock wave detection sensitivity for laser-produced plasmas in low pressure ambient gases using interferometry. Measurement Science and Technology, 2012, 23, 125204.	1.4	23
29	Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition. Journal Physics D: Applied Physics, 2012, 45, 225101.	1.3	26
30	Observation of epitaxially ordered twinned zinc aluminate "nanoblades―on c-sapphire. Journal of Materials Science: Materials in Electronics, 2012, 23, 758-765.	1.1	0
31	Field emission in ordered arrays of ZnO nanowires prepared by nanosphere lithography and extended Fowler-Nordheim analyses. Journal of Applied Physics, 2011, 110, .	1.1	16
32	Control of ZnO nanowire arrays by nanosphere lithography (NSL) on laser-produced ZnO substrates. Applied Surface Science, 2011, 257, 5159-5162.	3.1	11
33	Ion emission in collisions between two laser-produced plasmas. Journal Physics D: Applied Physics, 2011, 44, 355203.	1.3	18
34	Effects of the crystallite mosaic spread on integrated peak intensities in 2Î,–ω measurements of highly crystallographically textured ZnO thin films. Journal Physics D: Applied Physics, 2011, 44, 375401.	1.3	20
35	Zinc oxide and indium tin oxide thin films for the growth and characterization of <i>Shewanella loihica </i> PV-4Âelectroactive biofilms. Virulence, 2011, 2, 490-489.	1.8	4
36	Emission characteristics and dynamics of the stagnation layer in colliding laser produced plasmas. Journal of Applied Physics, 2010, 107, .	1.1	37

#	Article	IF	CITATIONS
37	Photoionization of the Ne-like <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mtext>Si</mml:mtext></mml:mrow><mml:mrow> in ground and metastable states in the 110â€"184-eV photon energy range. Physical Review A, 2009, 79, .</mml:mrow></mml:msup></mml:mrow></mml:math>	< 1::: onl::mn>	•42/mml:m
38	ZnO films grown by pulsed-laser deposition on soda lime glass substrates for the ultraviolet inactivation of Staphylococcus epidermidis biofilms. Science and Technology of Advanced Materials, 2009, 10, 045003.	2.8	31
39	Electron and ion stagnation at the collision front between two laser produced plasmas. Journal Physics D: Applied Physics, 2009, 42, 055211.	1.3	37
40	Growth and field emission properties of ZnO nanostructures deposited by a novel pulsed laser ablation source on silicon substrates. Ultramicroscopy, 2009, 109, 399-402.	0.8	5
41	Time resolved Nomarski interferometery of laser produced plasma plumes. Applied Surface Science, 2009, 255, 5167-5171.	3.1	13
42	Particle diagnostics of a ZnO laser ablation plume for nanostructured material deposition. Applied Surface Science, 2009, 255, 5338-5341.	3.1	8
43	Colliding laser produced plasmas as novel sources: Optical diagnostics. Journal of Physics: Conference Series, 2009, 194, 062003.	0.3	2
44	Growth and characterisation of epitaxially ordered zinc aluminate domains on c-sapphire. Thin Solid Films, 2008, 516, 1725-1735.	0.8	5
45	The 5d photoabsorption spectra of Pb III and Bi IV. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 205001.	0.6	12
46	Growth of ZnO nanostructures on Au-coated Si: Influence of growth temperature on growth mechanism and morphology. Journal of Applied Physics, 2008, 104, .	1.1	30
47	Control of ZnO nanorod array density by Zn supersaturation variation and effects on field emission. Nanotechnology, 2007, 18, 215704.	1.3	48
48	3pphotoabsorption spectra ofMn2+andMn3+. Physical Review A, 2007, 75, .	1.0	1
49	Morphological control of ZnO nanostructures grown on silicon. , 2007, 6474, 238.		O
50	P-type nitrogen- and phosphorus-doped ZnO thin films grown by pulsed laser deposition on sapphire substrates. , 2007, , .		2
51	Nitrogen doping of ZnO thin films grown by plasma-assisted pulsed-laser deposition. Journal of Physics: Conference Series, 2007, 59, 505-509.	0.3	4
52	(20â^23) ZnO thin films grown by pulsed laser deposition on CeO2-buffered r-sapphire substrate. Journal of Applied Physics, 2007, 101, 013509.	1.1	34
53	ZnO nanostructured thin films grown by pulsed laser deposition in mixed O2 / Ar background gas. Superlattices and Microstructures, 2007, 42, 468-472.	1.4	15
54	Morphological control of ZnO nanostructures on silicon substrates. Superlattices and Microstructures, 2007, 42, 337-342.	1.4	7

#	Article	IF	CITATIONS
55	Characterization of nitrogen-doped ZnO thin films grown by plasma-assisted pulsed laser deposition on sapphire substrates. Superlattices and Microstructures, 2007, 42, 21-25.	1.4	34
56	Self-organized ZnAl2O4 nanostructures grown on -sapphire. Superlattices and Microstructures, 2007, 42, 327-332.	1.4	3
57	Electrical characterisation of phosphorus-doped ZnO thin films grown by pulsed laser deposition. Superlattices and Microstructures, 2007, 42, 74-78.	1.4	23
58	Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO. Applied Physics Letters, 2006, 88, 071919.	1.5	18
59	ZnO thin films grown on platinum (111) buffer layers by pulsed laser deposition. Thin Solid Films, 2006, 500, 78-83.	0.8	15
60	Growth of crystalline ZnO nanostructures using pulsed laser deposition. Superlattices and Microstructures, 2006, 39, 153-161.	1.4	9
61	4d photoabsorption spectra of Indium (In II–In IV). Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 773-782.	0.6	11
62	p-type conduction above room temperature in nitrogen-doped ZnO thin film grown by plasma-assisted pulsed laser deposition. Electronics Letters, 2006, 42, 1181.	0.5	6
63	Laterally and vertically grown ZnO nanostructures on sapphire. , 2005, , .		0
64	Comparison of structural, optical and electrical properties of undoped ZnO thin films grown on - and - Al2O3 substrates using pulsed laser deposition. Superlattices and Microstructures, 2005, 38, 256-264.	1.4	12
65	Studying the growth conditions, the alignment and structure of ZnO nanorods. Surface and Coatings Technology, 2005, 200, 1093-1096.	2.2	43
66	Properties of Li-, P- and N-doped ZnO thin films prepared by pulsed laser deposition. Superlattices and Microstructures, 2005, 38, 397-405.	1.4	37
67	Synthesis and photoluminescence of ZnO nanowires/nanorods. Journal of Materials Science: Materials in Electronics, 2005, 16, 397-401.	1.1	17
68	Fabrication of p-type doped ZnO thin films using pulsed laser deposition. Journal of Materials Science: Materials in Electronics, 2005, 16, 421-427.	1.1	18
69	EUV photoabsorption spectra of Cd II and Cd III. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 83-88.	0.6	9
70	On the 3p-subshell photoabsorption spectra of iron-group ions: the case of Mn2+. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, L1-L8.	0.6	16
71	Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment. Journal of Applied Physics, 2005, 97, 064904.	1.1	21
72	Study of exciton–polariton modes in nanocrystalline thin films of ZnO using reflectance spectroscopy. Nanotechnology, 2005, 16, 2625-2632.	1.3	10

#	Article	IF	CITATIONS
73	Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential. Physical Review B, 2005, 71, .	1.1	183
74	Theoretical and experimental study of the extreme ultraviolet photoabsorption spectrum of triply ionized yttrium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 4663-4680.	0.6	5
75	Effect of polycrystallinity on the optical properties of highly oriented ZnO grown by pulsed laser deposition. Thin Solid Films, 2004, 458, 330-335.	0.8	19
76	VUV/EUV ionising radiation and atoms and ions: dual laser plasma investigations. Radiation Physics and Chemistry, 2004, 70, 291-321.	1.4	33
77	Ultraviolet stimulated emission from bulk and polycrystalline ZnO thin films with varying grain sizes. Physica B: Condensed Matter, 2003, 340-342, 245-249.	1.3	14
78	Exciton–polariton behaviour in bulk and polycrystalline ZnO. Physica B: Condensed Matter, 2003, 340-342, 230-234.	1.3	6
79	Correlation of Raman and X-ray diffraction measurements of annealed pulsed laser deposited ZnO thin films. Thin Solid Films, 2003, 436, 273-276.	0.8	46
80	The 4p-subshell photoabsorption spectrum of singly ionized molybdenum. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2611-2628.	0.6	4
81	Trends in autoionization of Rydberg states converging to the4sthreshold in theKrâ^'Rb+â^'Sr2+isoelectonic sequence: Theory and experiment. Physical Review A, 2003, 67, .	1.0	17
82	Absolute photoionization cross sections and resonance structure of doubly ionized silicon in the region of the2pâ~1threshold: Experiment and theory. Physical Review A, 2003, 68, .	1.0	15
83	Pulsed laser deposition of wide-bandgap semiconductor thin films. , 2003, 4876, 508.		1
84	Vacuum-UV photoabsorption imaging of laser-ablated plumes. , 2003, 4876, 564.		1
85	VUV and soft x-ray emission from pre-plasmas irradiated with intense picosecond and femtosecond pulses., 2003,,.		3
86	Low-level measurements of carbon concentrations in steel using laser-induced plasma spectroscopy (LIPS). , 2003, , .		0
87	Study of photoluminescence at 3.310 and 3.368 eV in GaN/sapphire(0001) and GaN/GaAs(001) grown by liquid-target pulsed-laser deposition. Applied Physics Letters, 2002, 80, 3301-3303.	1.5	16
88	A computational model for selected emission transitions in a laser produced lithium ablation plume. Applied Surface Science, 2002, 197-198, 72-76.	3.1	9
89	Study of expansion of laser ablation plumes of Ga and GaN in various N2 atmospheres using stigmatic emission spectroscopy. Applied Surface Science, 2002, 197-198, 325-330.	3.1	6
90	Comparison between Intensified Photodiode Array and Charge-Coupled Device Detectors in the Vacuum Ultraviolet for Laser-Induced Plasma Spectroscopy. Applied Spectroscopy, 2001, 55, 1430-1433.	1,2	9

#	Article	IF	CITATIONS
91	Photoluminescence study of GaN grown by pulsed laser deposition in nitrogen atmosphere. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 128-130.	1.7	O
92	Defect luminescence of GaN grown by pulsed laser deposition. Journal of Crystal Growth, 2001, 222, 497-502.	0.7	16
93	Vacuum-ultraviolet absorption spectrum of the Rb+ion in a laser-generated plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, L651-L656.	0.6	7
94	Wave-function collapse with increasing ionization:â€,â€,4dphotoabsorption of Cs throughCs4+. Physical Review A, 2001, 63, .	1.0	27
95	Comparative study of the expansion dynamics of Ga+ ions in the laser ablation of Ga and GaN using time-resolved extreme UV absorption spectroscopy. Applied Surface Science, 2000, 168, 150-153.	3.1	5
96	The evolution of 4d photoabsorption in Sb with increasing ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 1383-1401.	0.6	15
97	Vacuum-UV absorption spectrum of a laser-produced chromium plasma: 3p-subshell photoabsorption by Cr2+ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 5077-5090.	0.6	20
98	The photoabsorption spectrum of laser-generated Li+in the 60-190 eV photon energy range. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 5203-5214.	0.6	9
99	Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys. Journal Physics D: Applied Physics, 2000, 33, 2252-2262.	1.3	40
100	Photoabsorption and photoion spectroscopy of atomic uranium in the region of6pand5dexcitations. Physical Review A, 2000, 61, .	1.0	8
101	Vacuum-ultraviolet resonant photoabsorption imaging of laser produced plasmas. Journal of Applied Physics, 2000, 88, 4953-4960.	1.1	4
102	Metastable state contributions to the measured 3p photoabsorption spectrum of Cr+ions in a laser-produced plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, L583-L591.	0.6	49
103	Discrete structure in the 4d photoabsorption spectrum of tellurium and its ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 3905-3922.	0.6	25
104	Observation of a 6p-6d giant dipole resonance in the VUV photoabsorption spectrum of a laser-produced thorium plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, L285-L290.	0.6	6
105	New high-resolution measurements of doubly excited states of Li+. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 4193-4207.	0.6	37
106	Anomalous Behavior of the Near-Threshold Photoionization Cross Section of the Neon Isoelectronic Sequence: A Combined Experimental and Theoretical Study. Physical Review Letters, 1999, 83, 2151-2154.	2.9	27
107	Diagnostic of an expanding laser-produced lithium plasma using ICCD frame photography and shadowgraphy. Applied Surface Science, 1998, 127-129, 1035-1040.	3.1	18
108	Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the Dual Laser Plasma technique. Applied Surface Science, 1998, 127-129, 686-691.	3.1	15

#	Article	IF	CITATIONS
109	Extreme-UV photoabsorption spectrum of a laser-produced silicon plasma: evidence for metastable Si ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L547-L552.	0.6	16
110	Measurement and analysis of the photoabsorption spectra of laser-produced Al and in the region of 2p-subshell excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 677-688.	0.6	9
111	Short-pulse, extreme-ultraviolet continuum emission from a table-top laser plasma light source. Applied Physics Letters, 1997, 70, 1497-1499.	1.5	13
112	Measurement of the XUV photoabsorption spectra of atomic zinc and its ions :n= 1, 2, and 3 in the region of 3p-subshell excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 4801-4812.	0.6	5
113	New experiments in photoabsorption studies of singly and multiply charged ions. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79, 283-288.	0.8	12
114	Measurements of extreme UV yields from Nd-YAG plasmas using a multilayer monochromator. Journal of Electron Spectroscopy and Related Phenomena, 1996, 80, 295-298.	0.8	1
115	4f(P1)Giant Dipole Resonance inLa3+. Physical Review Letters, 1995, 74, 2188-2191.	2.9	36
116	High-resolution photoion yield measurements of 'hollow' atomic lithium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, L161-L168.	0.6	71
117	2p-subshell photoabsorption by Si2+ions in a laser-produced plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 1715-1722.	0.6	26
118	XUV photoabsorption of laser generated Au vapour. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 181-190.	0.6	11
119	Extreme-ultraviolet studies with laser-produced plasmas. Optical Engineering, 1994, 33, 3984.	0.5	56
120	Even-parity autoionizing states in the extreme-ultraviolet photoabsorption spectra of Mg,Al+, andSi2+. Physical Review A, 1994, 49, 755-761.	1.0	28
121	First observation of a photon-induced triply excited state in atomic lithium. Physical Review Letters, 1994, 72, 2359-2362.	2.9	110
122	The 2p-subshell photoabsorption spectrum of Al+in a laser-produced plasma. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 5055-5068.	0.6	21
123	X-UV Absorption Spectroscopy with Laser-Produced Plasmas: A Review. Physica Scripta, 1991, T34, 77-92.	1.2	110
124	<title>Applications of laser plasmas in XUV photoabsorption spectroscopy</title> ., 1991, 1503, 406.		0
125	2pphotoabsorption spectra of valence excited configurations in Al2+and Si3+observed in a dual laser produced plasma experiment. Physica Scripta, 1990, 41, 30-34.	1.2	14
126	The 2p-subshell absorption spectrum of Al III. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, 3685-3693.	0.6	22

#	Article	IF	CITATIONS
127	Beam-foil spectroscopy of 2p to 1s transitions in Si XI to Si XIV ions. Journal of Physics B: Atomic and Molecular Physics, 1986, 19, 2531-2546.	1.6	19