ä,œåpè®,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6851123/publications.pdf Version: 2024-02-01

Χ œÅ; È®

#	Article	IF	CITATIONS
1	Sea urchin-like mesoporous WO3 (SUS-WO3) for sensitive 3-hydroxy-2-butanone biomarker detection. Materials Science in Semiconductor Processing, 2022, 137, 106160.	1.9	4
2	An electrochemical sensor based on CNF@AuNPs for metronidazole hypersensitivity detection. Biosensors and Bioelectronics: X, 2022, 10, 100102.	0.9	2
3	Mesoporous ZnO nanosheet as gas sensor for sensitive triethylamine detection. Analytical and Bioanalytical Chemistry, 2022, 414, 2181-2188.	1.9	8
4	Mesoporous NiO@ZnO nanofiber membranes <i>via</i> single-nozzle electrospinning for urine metabolism analysis of smokers. Analyst, The, 2022, 147, 1688-1694.	1.7	2
5	Ultra-sensitive electrochemical detection of ampicillin with hollow tubular mesoporous In2O3@Au@Apta nanofibers as electrode materials. Materials Chemistry and Physics, 2022, 282, 125992.	2.0	3
6	Predicting the Antigenic Relationship of Foot-and-Mouth Disease Virus for Vaccine Selection Through a Computational Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 677-685.	1.9	3
7	Rapid detection of <scp><i>Escherichia coli</i> O157</scp> : <scp>H7</scp> in milk, bread, and jelly by lac dye <scp>colorationâ€based</scp> bidirectional lateral flow immunoassay strip. Journal of Food Safety, 2021, 41, .	1.1	12
8	Double-layer capsule of mesoporous ZnO@SnO ₂ for sensitive detection of triethylamine. Analyst, The, 2021, 146, 6193-6201.	1.7	8
9	Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Applied Microbiology and Biotechnology, 2021, 105, 1315-1331.	1.7	19
10	Raman spectroscopy combined with machine learning for rapid detection of food-borne pathogens at the single-cell level. Talanta, 2021, 226, 122195.	2.9	64
11	Hierarchical mesoporous hollow Ce-MOF nanosphere as oxidase mimic for highly sensitive colorimetric detection of ascorbic acid. Chemical Physics Letters, 2021, 777, 138749.	1.2	18
12	Revealing the Mutation Patterns of Drug-Resistant Reverse Transcriptase Variants of Human Immunodeficiency Virus through Proteochemometric Modeling. Biomolecules, 2021, 11, 1302.	1.8	0
13	Hierarchical mesoporous SnO2 nanotube templated by staphylococcus aureus through electrospinning for highly sensitive detection of triethylamine. Materials Science in Semiconductor Processing, 2021, 136, 106129.	1.9	9
14	An Aggregation-Induced Emission Material Labeling Antigen-Based Lateral Flow Immunoassay Strip for Rapid Detection of Escherichia coli O157:H7. SLAS Technology, 2021, 26, 377-383.	1.0	9
15	A Novel Design of Multi-epitope Vaccine Against Helicobacter pylori by Immunoinformatics Approach. International Journal of Peptide Research and Therapeutics, 2021, 27, 1027-1042.	0.9	8
16	Antibiotic Resistance Patterns of <i>Staphylococcus aureus</i> Isolates from Retail Foods in Mainland China: A Meta-Analysis. Foodborne Pathogens and Disease, 2020, 17, 296-307.	0.8	14
17	Hydrangea-like mesoporous WO3 nanoflowers with crystalline framework for 3-hydroxy-2-butanone sensing. Analytical and Bioanalytical Chemistry, 2020, 412, 8371-8378.	1.9	12
18	A colorimetric immunoassay for determination of Escherichia coli O157:H7 based on oxidase-like activity of cobalt-based zeolitic imidazolate framework. Mikrochimica Acta, 2020, 187, 506.	2.5	8

Ä,ŒÅŧÈ®,

#	Article	IF	CITATIONS
19	SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157:H7. Analytical and Bioanalytical Chemistry, 2020, 412, 7881-7890.	1.9	30
20	Immunological evaluation of virulence-deficient Listeria monocytogenes strains in C57BL/6 mice. Microbial Pathogenesis, 2020, 148, 104448.	1.3	1
21	Cableâ€Like Core–Shell Mesoporous SnO ₂ Nanofibers by Singleâ€Nozzle Electrospinning Phase Separation for Formaldehyde Sensing. Chemistry - A European Journal, 2020, 26, 9365-9370.	1.7	6
22	Two-Dimensional Ultrathin Multilayers ZIF-8 Nanosheets with Sustained Antibacterial Efficacy for Aeromonas Hydrophila. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3862-3868.	1.9	5
23	Attenuated Listeria monocytogenes as a Vaccine Vector for the Delivery of OMPW, the Outer Membrane Protein of Aeromonas hydrophila. Frontiers in Microbiology, 2020, 11, 70.	1.5	9
24	Cobalt-Iron mixed-metal-organic framework (Co3Fe-MMOF) as peroxidase mimic for highly sensitive enzyme-linked immunosorbent assay (ELISA) detection of Aeromonas hydrophila. Microchemical Journal, 2020, 154, 104591.	2.3	16
25	Peanut-like mesoporous tungsten oxides via a synergistic templating strategy for efficient isoprene detection. Journal of Materials Science, 2020, 55, 7645-7651.	1.7	3
26	Modeling the interactions among <i>Salmonella</i> enteritidis, <i>Pseudomonas aeruginosa</i> , and <i>Lactobacillus plantarum</i> . Journal of Food Safety, 2020, 40, e12811.	1.1	4
27	Attenuated Listeria monocytogenes protecting zebrafish (Danio rerio) against Vibrio species challenge. Microbial Pathogenesis, 2019, 132, 38-44.	1.3	14
28	Modeling the Effects of the Preculture Temperature on the Lag Phase of Listeria monocytogenes at 25°C. Journal of Food Protection, 2019, 82, 2100-2107.	0.8	4
29	Development of a Bacterial Macroarray for the Rapid Screening of Targeted Antibody-Secreted Hybridomas. SLAS Discovery, 2019, 24, 190-198.	1.4	1
30	Comparison between gold nanoparticles and FITC as the labelling in lateral flow immunoassays for rapid detection of <i>Ralstonia solanacearum</i> . Food and Agricultural Immunology, 2018, 29, 1074-1085.	0.7	6
31	Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis. Analytical and Bioanalytical Chemistry, 2018, 410, 7145-7152.	1.9	49
32	Gut Microbiota and Relevant Metabolites Analysis in Alcohol Dependent Mice. Frontiers in Microbiology, 2018, 9, 1874.	1.5	46
33	Selective enrichment of glycopeptides/phosphopeptides using Fe 3 O 4 @Au-B(OH) 2 @mTiO 2 core-shell microspheres. Talanta, 2017, 166, 154-161.	2.9	29
34	Highly selective SiO2–NH2@TiO2 hollow microspheres for simultaneous enrichment of phosphopeptides and glycopeptides. Analytical and Bioanalytical Chemistry, 2017, 409, 1607-1614.	1.9	31
35	Ultrasensitive enrichment of phosphopeptides with Ti4+ immobilized SiO2 graphene-like multilayer nanosheets. Analyst, The, 2016, 141, 3421-3427.	1.7	14
36	Interconversion of Triply Periodic Constant Mean Curvature Surface Structures: From Double Diamond to Single Gyroid. Chemistry of Materials, 2016, 28, 3691-3702.	3.2	46

Ä,ŒÅŧÈ®,

#	Article	IF	CITATIONS
37	Synthesis of bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets for sequential selective enrichment of phosphopeptides and glycopeptides for mass spectrometric analysis. Analytical and Bioanalytical Chemistry, 2016, 408, 5489-5497.	1.9	17
38	Amphiphilic ABC triblock terpolymer templated large-pore mesoporous silicas. Materials Letters, 2015, 141, 176-179.	1.3	5
39	Synthesis and Characterization of Macroporous Photonic Structure that Consists of Azimuthally Shifted Double-Diamond Silica Frameworks. Chemistry of Materials, 2014, 26, 7020-7028.	3.2	44
40	Rigid bolaform surfactant templated mesoporous silicon nanofibers as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19855-19860.	5.2	18
41	Molecular design of the amphiphilic AB diblock copolymer toward one-step synthesis of amino-group functionalized large pore mesoporous silica. RSC Advances, 2014, 4, 43047-43051.	1.7	4
42	Determination of Meclofenoxate Hydrochloride by Resonance Rayleigh Scattering Method Coupled with Flow Injection Technique. Analytical Letters, 2010, 43, 2125-2133.	1.0	8
43	Determination of propafenone hydrochloride by flowâ€injection analysis coupled with resonance light scattering detection. Luminescence, 2009, 24, 79-83.	1.5	9
44	Determination of verapamil hydrochloride with 12-tungstophosphoric acid by resonance Rayleigh scattering method coupled to flow injection system. Analytica Chimica Acta, 2007, 588, 10-15.	2.6	23