
Michelle Michels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/685097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relation Between Early Diastolic Mid-Ventricular Flow and Elastic Forces Indicating Aneurysm Formation in Hypertrophic Cardiomyopathy. Journal of the American Society of Echocardiography, 2022, , .	1.2	5
2	Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Reports, 2022, 39, 110809.	2.9	20
3	Contemporary family screening in hypertrophic cardiomyopathy: the role of cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2022, 23, 1144-1154.	0.5	4
4	Bloodâ€based biomarkers for the prediction of hypertrophic cardiomyopathy prognosis: a systematic review and metaâ€analysis. ESC Heart Failure, 2022, 9, 3418-3434.	1.4	6
5	Left-ventricular outflow tract acceleration time is associated with symptoms in patients with obstructive hypertrophic cardiomyopathy. Journal of Ultrasound, 2021, 24, 279-287.	0.7	1
6	Associations Between Female Sex, Sarcomere Variants, and Clinical Outcomes in Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2021, 14, e003062.	1.6	38
7	Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions. Genetics in Medicine, 2021, 23, 69-79.	1.1	39
8	Cardiovascular disease in non-classic Pompe disease: A systematic review. Neuromuscular Disorders, 2021, 31, 79-90.	0.3	9
9	Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 150, 77-90.	0.9	10
10	Impact of sex on timing and clinical outcome of septal myectomy for obstructive hypertrophic cardiomyopathy. International Journal of Cardiology, 2021, 323, 133-139.	0.8	8
11	Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2021, 14, e007022.	1.6	58
12	Incremental Value of an Insertable Cardiac Monitor in Patients with Hypertrophic Cardiomyopathy with Low or Intermediate Risk for Sudden Cardiac Death. Cardiology, 2021, 146, 207-212.	0.6	7
13	BIO FOr CARE: biomarkers of hypertrophic cardiomyopathy development and progression in carriers of Dutch founder truncating MYBPC3 variants—design and status. Netherlands Heart Journal, 2021, 29, 318-329.	0.3	7
14	Sex-Related Differences in Protein Expression in Sarcomere Mutation-Positive Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 612215.	1.1	11
15	Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. European Heart Journal, 2021, 42, 1988-1996.	1.0	69
16	Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations. Clinical Epigenetics, 2021, 13, 61.	1.8	17
17	Diagnostic Cardiovascular Magnetic Resonance Imaging Criteria in Noncompaction Cardiomyopathy and the Yield of Genetic Testing. Canadian Journal of Cardiology, 2021, 37, 433-442.	0.8	11
18	Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation. Genetics in Medicine, 2021, 23, 1281-1287.	1.1	11

#	Article	IF	CITATIONS
19	Quality assurance of quantitative cardiac T1-mapping in multicenter clinical trials – A T1 phantom program from the hypertrophic cardiomyopathy registry (HCMR) study. International Journal of Cardiology, 2021, 330, 251-258.	0.8	21
20	Predictors of Major Atrial Fibrillation Endpoints in the National Heart, Lung, and Blood Institute HCMR. JACC: Clinical Electrophysiology, 2021, 7, 1376-1386.	1.3	13
21	Usefulness of High-Sensitivity Cardiac Troponin T to Predict Long-Term Outcome in Patients with Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2021, 152, 120-124.	0.7	8
22	Implantable loop recorders in patients with heart disease: comparison between patients with and without syncope. Open Heart, 2021, 8, e001748.	0.9	2
23	Problems on the labour market for young Dutch cardiologists. Netherlands Heart Journal, 2021, 29, 423-426.	0.3	0
24	Novel Morphological Features on CMR for the Prediction of Pathogenic Sarcomere Gene Variants in Subjects Without Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 727405.	1.1	4
25	Worldwide differences in primary prevention implantable cardioverter defibrillator utilization and outcomes in hypertrophic cardiomyopathy. European Heart Journal, 2021, 42, 3932-3944.	1.0	43
26	Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nature Genetics, 2021, 53, 128-134.	9.4	155
27	Intracardiac Echocardiography–Guided Biopsy in the Work-Up of an Unexplained Cardiac Mass. JACC: Cardiovascular Interventions, 2021, 14, e297-e299.	1.1	1
28	Distinct Metabolomic Signatures in Preclinical and Obstructive Hypertrophic Cardiomyopathy. Cells, 2021, 10, 2950.	1.8	5
29	Effect of Mavacamten on Echocardiographic Features in Symptomatic Patients With Obstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2021, 78, 2518-2532.	1.2	59
30	Association of Obesity With Adverse Long-term Outcomes in Hypertrophic Cardiomyopathy. JAMA Cardiology, 2020, 5, 65.	3.0	78
31	Effect of body surface area and gender on wall thickness thresholds in hypertrophic cardiomyopathy. Netherlands Heart Journal, 2020, 28, 37-43.	0.3	10
32	P1825 Myocardial bridging and coronary artery disease in hypertrophic cardiomyopathy: a matched case control study. European Heart Journal Cardiovascular Imaging, 2020, 21, .	0.5	0
33	P802 Delayed time to peak left ventricular outflow tract velocity is associated with symptomatic status in patients with hypertrophic obstructive cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2020, 21, .	0.5	0
34	Temporal Trend of Age at Diagnosis in Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2020, 13, e007230.	1.6	48
35	Spatial and Functional Distribution of <i>MYBPC3</i> Pathogenic Variants and Clinical Outcomes in Patients With Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2020, 13, 396-405.	1.6	47
36	Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, The, 2020, 396, 759-769.	6.3	481

#	Article	IF	CITATIONS
37	Strength of patient cohorts and biobanks for cardiomyopathy research. Netherlands Heart Journal, 2020, 28, 50-56.	0.3	1
38	A Validated Model for Sudden Cardiac Death Risk Prediction in Pediatric Hypertrophic Cardiomyopathy. Circulation, 2020, 142, 217-229.	1.6	129
39	Sex-specific cardiac remodeling in early and advanced stages of hypertrophic cardiomyopathy. PLoS ONE, 2020, 15, e0232427.	1.1	25
40	Frequency and Significance of Coronary Artery Disease and Myocardial Bridging in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2020, 125, 1404-1412.	0.7	19
41	Exercise and myocardial injury in hypertrophic cardiomyopathy. Heart, 2020, 106, 1169-1175.	1.2	13
42	Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy. Circulation, 2020, 141, 828-842.	1.6	181
43	Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic <i>TNNT2</i> Gene Variants. Journal of the American Heart Association, 2020, 9, e015316.	1.6	14
44	Hypertrophic Cardiomyopathy With Left Ventricular Systolic Dysfunction. Circulation, 2020, 141, 1371-1383.	1.6	108
45	Sex-specific cardiac remodeling in early and advanced stages of hypertrophic cardiomyopathy. , 2020, 15, e0232427.		0
46	Sex-specific cardiac remodeling in early and advanced stages of hypertrophic cardiomyopathy. , 2020, 15, e0232427.		0
47	Sex-specific cardiac remodeling in early and advanced stages of hypertrophic cardiomyopathy. , 2020, 15, e0232427.		0
48	Sex-specific cardiac remodeling in early and advanced stages of hypertrophic cardiomyopathy. , 2020, 15, e0232427.		0
49	Effectiveness of the 2014 European Society of Cardiology guideline on sudden cardiac death in hypertrophic cardiomyopathy: a systematic review and meta-analysis. Heart, 2019, 105, heartjnl-2018-313700.	1.2	31
50	Myocardial Stretch Post-atrial Contraction in Healthy Volunteers and Hypertrophic Cardiomyopathy Patients. Ultrasound in Medicine and Biology, 2019, 45, 1987-1998.	0.7	13
51	Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells, 2019, 8, 741.	1.8	26
52	Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry. Journal of the American College of Cardiology, 2019, 74, 2333-2345.	1.2	152
53	Five-year prognostic significance of global longitudinal strain in individuals with aÂhypertrophic cardiomyopathy gene mutation without hypertrophic changes. Netherlands Heart Journal, 2019, 27, 117-126.	0.3	8
54	Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy. Genome Medicine, 2019, 11, 5.	3.6	90

#	Article	IF	CITATIONS
55	Integrative Functional Annotation of 52 Genetic Loci Influencing Myocardial Mass Identifies Candidate Regulatory Variants and Target Genes. Circulation Genomic and Precision Medicine, 2019, 12, e002328.	1.6	7
56	Clinical Course and Significance of Hypertrophic Cardiomyopathy Without Left Ventricular Hypertrophy. Circulation, 2019, 139, 830-833.	1.6	43
57	Usefulness of a standard 12-lead electrocardiogram to predict the eligibility for a subcutaneous defibrillator. Journal of Electrocardiology, 2019, 55, 123-127.	0.4	3
58	Mortality Risk Associated With Truncating Founder Mutations in Titin. Circulation Genomic and Precision Medicine, 2019, 12, e002436.	1.6	5
59	Naturally Occurring Shear Waves in Healthy Volunteers and Hypertrophic Cardiomyopathy Patients. Ultrasound in Medicine and Biology, 2019, 45, 1977-1986.	0.7	23
60	Increasing sensitivity—aÂcommon-sense approach?. Netherlands Heart Journal, 2019, 27, 287-288.	0.3	0
61	Response by Ho et al to Letter Regarding Article, "Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy: Insights From the Sarcomeric Human Cardiomyopathy Registry (SHaRe)― Circulation, 2019, 139, 1559-1560.	1.6	4
62	Myocardial adaptation after surgical therapy differs for aortic valve stenosis and hypertrophic obstructive cardiomyopathy. International Journal of Cardiovascular Imaging, 2019, 35, 1089-1100.	0.7	6
63	CORRELATION OF ECHOCARDIOGRAPHIC FINDINGS WITH SYMPTOMS IN HYPERTROPHIC CARDIOMYOPATHY PATIENTS. Journal of the American College of Cardiology, 2019, 73, 990.	1.2	0
64	Cardiac Phenotypes, Genetics, and RisksÂin Familial Noncompaction Cardiomyopathy. Journal of the American College of Cardiology, 2019, 73, 1601-1611.	1.2	65
65	Extra energy for hearts with aÂgenetic defect: ENERGY trial. Netherlands Heart Journal, 2019, 27, 200-205.	0.3	12
66	P1244Survival after septal myectomy in male and female patients with hypertrophic obstructive cardiomyopathy. European Heart Journal, 2019, 40, .	1.0	0
67	P2881Eligibility for a subcutaneous defibrillator based on standard 12-lead electrocardiogram. European Heart Journal, 2019, 40, .	1.0	0
68	Sex differences in hypertrophic cardiomyopathy. Current Opinion in Cardiology, 2019, 34, 254-259.	0.8	33
69	Family Screening: Who, When, and How. , 2019, , 189-198.		0
70	Outcomes of Contemporary Family Screening in Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2018, 11, e001896.	1.6	52
71	Value of implantable loop recorders in patients with structural or electrical heart disease. Journal of Interventional Cardiac Electrophysiology, 2018, 52, 203-208.	0.6	15
72	Three-dimensional echocardiography for the assessment of left ventricular geometry and papillary muscle morphology in hypertrophic cardiomyopathy. Journal of Ultrasound, 2018, 21, 17-24.	0.7	8

#	Article	IF	CITATIONS
73	Validation of the HCM Risk-SCD model in patients with hypertrophic cardiomyopathy following alcohol septal ablation. Europace, 2018, 20, f198-f203.	0.7	28
74	High T2-weighted signal intensity for risk prediction of sudden cardiac death in hypertrophic cardiomyopathy. International Journal of Cardiovascular Imaging, 2018, 34, 113-120.	0.7	21
75	145Clinical course and significance of hypertrophic cardiomyopathy without left ventricular hypertrophy. European Heart Journal, 2018, 39, .	1.0	0
76	Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy. Circulation, 2018, 138, 1387-1398.	1.6	468
77	Location of Hypertrophic Cardiomyopathy-Causing Troponin T Mutations Determines Degree of Myofilament Dysfunction. Biophysical Journal, 2018, 114, 313a.	0.2	Ο
78	Molecular autopsy. Netherlands Heart Journal, 2018, 26, 471-472.	0.3	4
79	Incident Atrial Fibrillation Is Associated With <i>MYH7</i> Sarcomeric Gene Variation in Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2018, 11, e005191.	1.6	46
80	Effect of Gender and Genetic Mutations on Outcomes in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2018, 122, 1947-1954.	0.7	27
81	Variable cardiac myosin binding protein-C expression in the myofilaments due to MYBPC3 mutations in hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2018, 123, 59-63.	0.9	21
82	Sex Differences at the Time of Myectomy in Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2018, 11, e004133.	1.6	48
83	Prediction of Extensive Myocardial Fibrosis in Nonhigh Risk Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2018, 122, 483-489.	0.7	8
84	Lack of evidence for a causal role of CALR3 in monogenic cardiomyopathy. European Journal of Human Genetics, 2018, 26, 1603-1610.	1.4	4
85	Evaluation of a novel automatic screening tool for determining eligibility for a subcutaneous implantable cardioverter-defibrillator. International Journal of Cardiology, 2018, 272, 97-101.	0.8	15
86	P917Evaluation of a new automated screening tool for the assessment of the eligibility for a subcutaneous implantable-cardioverter defibrillator. Europace, 2018, 20, i177-i178.	0.7	2
87	Prognostic significance of anterior mitral valve leaflet length in individuals with a hypertrophic cardiomyopathy gene mutation without hypertrophic changes. Journal of Ultrasound, 2018, 21, 217-224.	0.7	5
88	High T2-weighted signal intensity is associated with elevated troponin T in hypertrophic cardiomyopathy. Heart, 2017, 103, 293-299.	1.2	18
89	Disease Stage–Dependent Changes in Cardiac Contractile Performance and Oxygen Utilization Underlie Reduced Myocardial Efficiency in Human Inherited Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	41
90	Life-long tailoring of management for patients with hypertrophic cardiomyopathy. Netherlands Heart Journal, 2017, 25, 186-199.	0.3	24

#	Article	IF	CITATIONS
91	Care in Specialized Centers and Data Sharing Increase Agreement in Hypertrophic Cardiomyopathy Genetic Test Interpretation. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	42
92	Role of Genetic Testing in Inherited Cardiovascular Disease. JAMA Cardiology, 2017, 2, 1153.	3.0	75
93	Clinical Characteristics and Long-Term Outcome of Hypertrophic Cardiomyopathy in Individuals With a MYBPC3 (Myosin-Binding Protein C) Founder Mutation. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	31
94	Incidence of Device-Detected Atrial Fibrillation and Long-Term Outcomes in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2017, 119, 100-105.	0.7	40
95	P4505Anterior mitral valve leaflet in sarcomere gene mutation carriers without left ventricular hypertrophy and healthy controls. European Heart Journal, 2017, 38, .	1.0	Ο
96	Online mindfulness as a promising method to improve exercise capacity in heart disease: 12-month follow-up of a randomized controlled trial. PLoS ONE, 2017, 12, e0175923.	1.1	34
97	Pregnancy in Hypertrophic Cardiomyopathy. Congenital Heart Disease in Adolescents and Adults, 2017, , 155-164.	0.2	Ο
98	Effect of alcohol dosage on longâ€ŧerm outcomes after alcohol septal ablation in patients with hypertrophic cardiomyopathy. Catheterization and Cardiovascular Interventions, 2016, 88, 945-952.	0.7	5
99	Delayed and decreased LV untwist and unstrain rate in mutation carriers for hypertrophic cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2016, 18, jew213.	0.5	10
100	Value of Genetic Testing for the Prediction of Long-Term Outcome in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2016, 118, 881-887.	0.7	32
101	Management of an LCHADD Patient During Pregnancy and High Intensity Exercise. JIMD Reports, 2016, 32, 95-100.	0.7	11
102	ONE-YEAR RESULTS OF SEPTAL MICROSPHERE EMBOLIZATION IN OBSTRUCTIVE HYPERTROPHIC CARDIOMYOPATHY. Journal of the American College of Cardiology, 2016, 67, 353.	1.2	0
103	Multidimensional structure-function relationships in human Î ² -cardiac myosin from population-scale genetic variation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6701-6706.	3.3	98
104	ADP-Stimulated Contraction: A Predictor of Thin-Filament Activation in Cardiac Disease. Biophysical Journal, 2016, 110, 295a.	0.2	0
105	Elevated Plasma Cardiac Troponin T Levels Caused by Skeletal Muscle Damage in Pompe Disease. Circulation: Cardiovascular Genetics, 2016, 9, 6-13.	5.1	70
106	Biallelic Truncating Mutations in ALPK3 Cause Severe Pediatric Cardiomyopathy. Journal of the American College of Cardiology, 2016, 67, 515-525.	1.2	70
107	Long-Term Outcome of Alcohol Septal Ablation for Obstructive Hypertrophic Cardiomyopathy in the Young and the Elderly. JACC: Cardiovascular Interventions, 2016, 9, 463-469.	1.1	35
108	Complete reversal of hypertensive cardiomyopathy after initiating combined antihypertensive therapy. BMJ Case Reports, 2016, 2016, bcr2015212908.	0.2	1

#	Article	IF	CITATIONS
109	Left ventricular outflow tract gradient is associated with reduced capillary density in hypertrophic cardiomyopathy irrespective of genotype. European Journal of Clinical Investigation, 2015, 45, 1252-1259.	1.7	18
110	Oxidative Stress in Dilated Cardiomyopathy Caused by <i>MYBPC3</i> Mutation. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	1.9	33
111	Defining phenotypes and disease progression in sarcomeric cardiomyopathies: contemporary role of clinical investigations. Cardiovascular Research, 2015, 105, 409-423.	1.8	66
112	Long-Term Benefit of Myectomy and Anterior Mitral Leaflet Extension in Obstructive Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2015, 115, 670-675.	0.7	63
113	Validation of the 2014 European Society of Cardiology Guidelines Risk Prediction Model for the Primary Prevention of Sudden Cardiac Death in Hypertrophic Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 829-835.	2.1	113
114	A Systematic Review and Meta-Analysis ofÂLong-Term Outcomes After SeptalÂReduction Therapy in Patients WithÂHypertrophic Cardiomyopathy. JACC: Heart Failure, 2015, 3, 896-905.	1.9	149
115	ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proceedings of the United States of America, 2015, 112, E7003-12.	3.3	34
116	Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects. European Journal of Human Genetics, 2015, 23, 922-928.	1.4	70
117	Web-Based Mindfulness Intervention in Heart Disease: A Randomized Controlled Trial. PLoS ONE, 2015, 10, e0143843.	1.1	47
118	Family Screening: Who, When and How. , 2015, , 155-163.		0
119	Extreme interatrial conduction delay and regularization of atrial arrhythmias in a subgroup of patients with hypertrophic cardiomyopathy. International Journal of Cardiology Heart & Vessels, 2014, 4, 46-52.	0.5	2
120	Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovascular Research, 2014, 103, 248-257.	1.8	88
121	Long-Term Outcomes After Medical and Invasive Treatment in Patients With Hypertrophic Cardiomyopathy. JACC: Heart Failure, 2014, 2, 630-636.	1.9	79
122	Impact of Adverse Left Ventricular Remodeling on Sudden Cardiac Death in Patients With Hypertrophic Cardiomyopathy. Clinical Cardiology, 2014, 37, 493-498.	0.7	12
123	Faster Cross-Bridge Relaxation Rates Correlate with Increased Tension Cost in Hcm with the R403Q Myh7 Mutation. Biophysical Journal, 2014, 106, 561a.	0.2	Ο
124	Preserved cross-bridge kinetics in human hypertrophic cardiomyopathy patients with MYBPC3 mutations. Pflugers Archiv European Journal of Physiology, 2014, 466, 1619-1633.	1.3	19
125	Faster crossâ€bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q <i>MYH7</i> mutation. Journal of Physiology, 2014, 592, 3257-3272.	1.3	62
126	2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. European Heart Journal, 2014, 35, 2733-2779.	1.0	3,469

#	Article	IF	CITATIONS
127	Actin Carbonylation is Higher in Human Hypertrophic Cardiomyopathy Due to MYH7 Mutations. Biophysical Journal, 2014, 106, 778a-779a.	0.2	1
128	Gender Differences in Passive Tension in Hypertrophic Cardiomyopathy Patients. Biophysical Journal, 2014, 106, 346a-347a.	0.2	0
129	Founder mutations in hypertrophic cardiomyopathy patients in the Netherlands*. , 2014, , 37-42.		Ο
130	MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. Journal of Molecular and Cellular Cardiology, 2013, 65, 59-66.	0.9	49
131	Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy. Cardiovascular Research, 2013, 99, 432-441.	1.8	102
132	Implantable cardioverter-defibrillators in hypertrophic cardiomyopathy: Patient outcomes, rate of appropriate and inappropriate interventions, and complications. American Heart Journal, 2013, 166, 496-502.	1.2	82
133	Microsphere embolisation as an alternative for alcohol in percutaneous transluminal septal myocardial ablation. Netherlands Heart Journal, 2013, 21, 245-248.	0.3	9
134	Perturbed Length-Dependent Activation in Human Hypertrophic Cardiomyopathy With Missense Sarcomeric Gene Mutations. Circulation Research, 2013, 112, 1491-1505.	2.0	191
135	Diastolic Abnormalities in Normal Phenotype Hypertrophic Cardiomyopathy Gene Carriers: A Study Using Speckle Tracking Echocardiography. Echocardiography, 2013, 30, 558-563.	0.3	13
136	Increased energy utilization for force generation in human familial hypertrophic cardiomyopathy caused by sarcomere gene mutations. European Heart Journal, 2013, 34, P4192-P4192.	1.0	5
137	Follow-up of patients with genotype positive-phenotype negative hypertrophic cardiomyopathy. European Heart Journal, 2013, 34, P1201-P1201.	1.0	1
138	Contractile Dysfunction Irrespective of the Mutant Protein in Human Hypertrophic Cardiomyopathy With Normal Systolic Function. Circulation: Heart Failure, 2012, 5, 36-46.	1.6	127
139	Appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy: What happens on Sunday afternoons in May?. Europace, 2012, 14, 621-622.	0.7	3
140	Cardiomyocyte Hypertrophy and Reduced Myofibril Density Underlie Decreased Maximal Force Generating Capacity in Familial Hypertrophic Cardiomyopathy. Biophysical Journal, 2012, 102, 353a.	0.2	0
141	Frequency of Asymptomatic Disease Among Family Members With Noncompaction Cardiomyopathy. American Journal of Cardiology, 2012, 110, 1512-1517.	0.7	25
142	Perturbed Length-Dependent Activation in Human HCM with Sarcomere Mutations in Thin Filament Proteins. Biophysical Journal, 2012, 102, 157a-158a.	0.2	0
143	Reduced Length-Dependent Activation in Human Cardiomyocytes Harboring the Troponin I Mutation R145W. Biophysical Journal, 2012, 102, 158a.	0.2	0
144	The role of renin–angiotensin–aldosterone system polymorphisms in phenotypic expression of MYBPC3-related hypertrophic cardiomyopathy. European Journal of Human Genetics, 2012, 20, 1071-1077.	1.4	28

#	Article	IF	CITATIONS
145	Outcome and Complications After Implantable Cardioverter Defibrillator Therapy in Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2012, 5, 552-559.	1.6	150
146	Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy. European Heart Journal, 2011, 32, 1161-1170.	1.0	76
147	Mortality Risk of Untreated Myosin-Binding Protein C–Related Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2011, 58, 2406-2414.	1.2	27
148	Recurrent and founder mutations in the Netherlands: cardiac Troponin I (TNNI3) gene mutations as a cause of severe forms of hypertrophic and restrictive cardiomyopathy. Netherlands Heart Journal, 2011, 19, 344-351.	0.3	42
149	Founder mutations in hypertrophic cardiomyopathy patients in the Netherlands. Netherlands Heart Journal, 2010, 18, 248-254.	0.3	68
150	Long-Term Outcome of Alcohol Septal Ablation in Patients With Obstructive Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2010, 3, 362-369.	1.6	186
151	The Importance of Genetic Counseling, DNA Diagnostics, and Cardiologic Family Screening in Left Ventricular Noncompaction Cardiomyopathy. Circulation: Cardiovascular Genetics, 2010, 3, 232-239.	5.1	205
152	Disease penetrance and risk stratification for sudden cardiac death in asymptomatic hypertrophic cardiomyopathy mutation carriers. European Heart Journal, 2009, 30, 2593-2598.	1.0	80
153	Cardiac Myosin-Binding Protein C Mutations and Hypertrophic Cardiomyopathy. Circulation, 2009, 119, 1473-1483.	1.6	275
154	Diastolic Abnormalities as the First Feature of Hypertrophic Cardiomyopathy in Dutch Myosin-Binding Protein C Founder Mutations. JACC: Cardiovascular Imaging, 2009, 2, 58-64.	2.3	83
155	Delayed Left Ventricular Untwisting in Hypertrophic Cardiomyopathy. Journal of the American Society of Echocardiography, 2009, 22, 1320-1326.	1.2	31
156	Adverse reactions after the use of sulphur hexafluoride (SonoVue) echo contrast agent. Journal of Cardiovascular Medicine, 2009, 10, 75-77.	0.6	49
157	Focal AFâ€eblation after Pulmonary Vein Isolation in a Patient with Hypertrophic Cardiomyopathy Using Cryothermal Energy. PACE - Pacing and Clinical Electrophysiology, 2008, 31, 1358-1361.	0.5	4
158	Effect of Successful Alcohol Septal Ablation on Microvascular Function in Patients With Obstructive Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2008, 101, 1321-1327.	0.7	46
159	Influence of the pattern of hypertrophy on left ventricular twist in hypertrophic cardiomyopathy. Heart, 2008, 95, 657-661.	1.2	49
160	Cardiac Â-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. European Heart Journal, 2007, 28, 2732-2737.	1.0	122
161	Assessment of intravascular and extravascular mechanisms of myocardial perfusion abnormalities in obstructive hypertrophic cardiomyopathy by myocardial contrast echocardiography. Heart, 2007, 93, 1204-1212.	1.2	39
162	Assessment of Left Atrial Ejection Force in Hypertrophic Cardiomyopathy Using Real-time Three-dimensional Echocardiography. Journal of the American Society of Echocardiography, 2007, 20, 744-748.	1.2	33

#	Article	IF	CITATIONS
163	Clinical usefulness of SonoVue contrast echocardiography: the Thoraxcentre experience. Netherlands Heart Journal, 2007, 15, 55-60.	0.3	11
164	Familial screening and genetic counselling in hypertrophic cardiomyopathy: the Rotterdam experience. Netherlands Heart Journal, 2007, 15, 184-190.	0.3	35
165	Coronary flow reserve in hypertrophic cardiomyopathy: relation with microvascular dysfunction and pathophysiological characteristics. Netherlands Heart Journal, 2007, 15, 209-215.	0.3	37
166	Evaluation of pericardial hydatid cysts by different echocardiographic imaging modalities. International Journal of Cardiovascular Imaging, 2006, 22, 647-651.	0.7	10
167	Drug-eluting stent-supported percutaneous coronary intervention in high risk patients refused cardiac surgery. EuroIntervention, 2005, 1, 181-5.	1.4	0