
Joost Snijder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6850598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell, 2019, 176, 1026-1039.e15.	13.5	558
2	Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11157-11162.	3.3	501
3	Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nature Methods, 2019, 16, 595-602.	9.0	452
4	Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nature Structural and Molecular Biology, 2016, 23, 899-905.	3.6	366
5	Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell, 2019, 176, 1420-1431.e17.	13.5	339
6	Studying 18â€MDa Virus Assemblies with Native Mass Spectrometry. Angewandte Chemie - International Edition, 2013, 52, 4020-4023.	7.2	164
7	Defining the Stoichiometry and Cargo Load of Viral and Bacterial Nanoparticles by Orbitrap Mass Spectrometry. Journal of the American Chemical Society, 2014, 136, 7295-7299.	6.6	134
8	Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. Journal of Virology, 2018, 92, .	1.5	124
9	Resolving heterogeneous macromolecular assemblies by Orbitrap-based single-particle charge detection mass spectrometry. Nature Methods, 2020, 17, 395-398.	9.0	121
10	Boundaries of Mass Resolution in Native Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2014, 25, 906-917.	1.2	111
11	Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state. Science, 2017, 355, 1181-1184.	6.0	106
12	An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus. Immunity, 2018, 48, 799-811.e9.	6.6	104
13	Self-Sorting of Foreign Proteins in a Bacterial Nanocompartment. Journal of the American Chemical Society, 2014, 136, 3828-3832.	6.6	100
14	Adeno-associated virus capsid assembly is divergent and stochastic. Nature Communications, 2021, 12, 1642.	5.8	99
15	Structural basis of myelin-associated glycoprotein adhesion and signalling. Nature Communications, 2016, 7, 13584.	5.8	94
16	Bacterial encapsulins as orthogonal compartments for mammalian cell engineering. Nature Communications, 2018, 9, 1990.	5.8	88
17	Adenovirus Composition, Proteolysis, and Disassembly Studied by In-depth Qualitative and Quantitative Proteomics. Journal of Biological Chemistry, 2014, 289, 11421-11430.	1.6	81
18	Integrin and Defensin Modulate the Mechanical Properties of Adenovirus. Journal of Virology, 2013, 87, 2756-2766.	1.5	76

JOOST SNIJDER

#	Article	IF	CITATIONS
19	An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nature Structural and Molecular Biology, 2019, 26, 980-987.	3.6	69
20	Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids. Journal of Structural Biology, 2017, 198, 38-42.	1.3	68
21	Analytical Approaches for Size and Mass Analysis of Large Protein Assemblies. Annual Review of Analytical Chemistry, 2014, 7, 43-64.	2.8	62
22	Assembly and Mechanical Properties of the Cargo-Free and Cargo-Loaded Bacterial Nanocompartment Encapsulin. Biomacromolecules, 2016, 17, 2522-2529.	2.6	62
23	Insight into cyanobacterial circadian timing from structural details of the KaiB–KaiC interaction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1379-1384.	3.3	61
24	Self-assembly and characterization of small and monodisperse dye nanospheres in a protein cage. Chemical Science, 2014, 5, 575-581.	3.7	50
25	Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation inÂVitro and in Silico. Biophysical Journal, 2013, 105, 1893-1903.	0.2	47
26	Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathogens, 2021, 17, e1009282.	2.1	42
27	Examining the Heterogeneous Genome Content of Multipartite Viruses BMV and CCMV by Native Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 1000-1009.	1.2	41
28	Human plasma lgG1 repertoires are simple, unique, and dynamic. Cell Systems, 2021, 12, 1131-1143.e5.	2.9	37
29	Mass Spectrometry-Based Structural Virology. Analytical Chemistry, 2021, 93, 620-640.	3.2	36
30	Architecture of a dsDNA Viral Capsid in Complex with Its Maturation Protease. Structure, 2014, 22, 230-237.	1.6	34
31	Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core. ELife, 2018, 7, .	2.8	32
32	Structural Analysis of a Temperature-Induced Transition in a Viral Capsid Probed by HDX-MS. Biophysical Journal, 2017, 112, 1157-1165.	0.2	28
33	Mass Spectrometry-Based <i>De Novo</i> Sequencing of Monoclonal Antibodies Using Multiple Proteases and a Dual Fragmentation Scheme. Journal of Proteome Research, 2021, 20, 3559-3566.	1.8	27
34	The Cleaved N-Terminus of pVI Binds Peripentonal Hexons in Mature Adenovirus. Journal of Molecular Biology, 2014, 426, 1971-1979.	2.0	25
35	Assessment of genome packaging in AAVs using Orbitrap-based charge-detection mass spectrometry. Molecular Therapy - Methods and Clinical Development, 2022, 24, 40-47.	1.8	25
36	Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nature Communications, 2020, 11, 4646.	5.8	24

JOOST SNIJDER

#	Article	IF	CITATIONS
37	Frequency chasing of individual megadalton ions in an Orbitrap analyser improves precision of analysis in single-molecule mass spectrometry. Nature Chemistry, 2022, 14, 515-522.	6.6	24
38	Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles. PLoS Computational Biology, 2016, 12, e1004729.	1.5	17
39	Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nature Communications, 2022, 13, .	5.8	12
40	Template-Based Assembly of Proteomic Short Reads For <i>De Novo</i> Antibody Sequencing and Repertoire Profiling. Analytical Chemistry, 2022, 94, 10391-10399.	3.2	12
41	Fluoxetine targets an allosteric site in the enterovirus 2C AAA+ ATPase and stabilizes a ring-shaped hexameric complex. Science Advances, 2022, 8, eabj7615.	4.7	11
42	Conformational landscape and pathway of disulfide bond reduction of human alpha defensin. Protein Science, 2015, 24, 1264-1271.	3.1	7
43	The Kai-Protein Clock—Keeping Track of Cyanobacteria's Daily Life. Sub-Cellular Biochemistry, 2019, 93, 359-391.	1.0	5
44	Structural Studies of Coronavirus Fusion Proteins. Microscopy and Microanalysis, 2019, 25, 1300-1301.	0.2	4
45	Human Plasma IgG1 Repertoires are Simple, Unique, and Dynamic. SSRN Electronic Journal, 0, , .	0.4	4