
Dagmar Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6850369/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial nanocellulose: Reinforcement of compressive strength using an adapted Mobile Matrix Reservoir Technology and suitable post-modification strategies. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104978.	3.1	4
2	Drug delivery of 6-bromoindirubin-3'-glycerol-oxime ether employing poly(d,l-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents. Journal of Nanobiotechnology, 2022, 20, 5.	9.1	7
3	Biotech nanocellulose: A review on progress in product design and today's state of technical and medical applications. Carbohydrate Polymers, 2021, 254, 117313.	10.2	33
4	Biocompatible sulfated valproic acid-coupled polysaccharide-based nanocarriers with HDAC inhibitory activity. Journal of Controlled Release, 2021, 329, 717-730.	9.9	15
5	Overcoming the hydrophilicity of bacterial nanocellulose: Incorporation of the lipophilic coenzyme Q10 using lipid nanocarriers for dermal applications. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 106-112.	4.3	9
6	3D screen printing – An innovative technology for large-scale manufacturing of pharmaceutical dosage forms. International Journal of Pharmaceutics, 2021, 592, 120096.	5.2	14
7	Indole, Phenyl, and Phenol Groups: The Role of the Comonomer on Gene Delivery in Guanidinium Containing Methacrylamide Terpolymers. Macromolecular Rapid Communications, 2021, 42, e2000580.	3.9	4
8	The Role of Formamidine Groups in Dextran Based Nonviral Vectors for Gene Delivery on Their Physicochemical and Biological Characteristics. Macromolecular Bioscience, 2021, 21, e2000220.	4.1	3
9	Elucidating preparation-structure relationships for the morphology evolution during the RAFT dispersion polymerization of <i>N</i> -acryloyl thiomorpholine. Polymer Chemistry, 2021, 12, 1668-1680.	3.9	9
10	Cyreneâ,,¢ as an Alternative Sustainable Solvent for the Preparation of Poly(lactic-co-glycolic acid) Nanoparticles. Journal of Pharmaceutical Sciences, 2021, 110, 959-964.	3.3	19
11	Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. International Journal of Pharmaceutics, 2021, 599, 120404.	5.2	19
12	Beneficial Modulation of Lipid Mediator Biosynthesis in Innate Immune Cells by Antirheumatic Tripterygium wilfordii Glycosides. Biomolecules, 2021, 11, 746.	4.0	9
13	Anti-inflammatory celastrol promotes a switch from leukotriene biosynthesis to formation of specialized pro-resolving lipid mediators. Pharmacological Research, 2021, 167, 105556.	7.1	19
14	PEGylation of Guanidinium and Indole Bearing Poly(methacrylamide)s – Biocompatible Terpolymers for pDNA Delivery. Macromolecular Bioscience, 2021, 21, e2100146.	4.1	3
15	Controlled Release of the α-Tocopherol-Derived Metabolite α-13′-Carboxychromanol from Bacterial Nanocellulose Wound Cover Improves Wound Healing. Nanomaterials, 2021, 11, 1939.	4.1	12
16	Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acidÂnanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine, 2021, 16, 2075-2094.	3.3	4
17	The differences of the impact of a lipid and protein corona on the colloidal stability, toxicity, and degradation behavior of iron oxide nanoparticles. Nanoscale, 2021, 13, 9415-9435.	5.6	16
18	Tetraspanin 5 (TSPAN5), a Novel Gatekeeper of the Tumor Suppressor DLC1 and Myocardin-Related Transcription Factors (MRTFs), Controls HCC Growth and Senescence. Cancers, 2021, 13, 5373.	3.7	6

#	Article	IF	CITATIONS
19	Encapsulation of the anti-inflammatory dual FLAP/sEH inhibitor diflapolin improves the efficiency in human whole blood. Journal of Pharmaceutical Sciences, 2021, , .	3.3	1
20	Development and characterization of bacterial nanocellulose loaded with Boswellia serrata extract containing nanoemulsions as natural dressing for skin diseases. International Journal of Pharmaceutics, 2020, 587, 119635.	5.2	18
21	The indirubin derivative 6-bromoindirubin-3′-glycerol-oxime ether (6BIGOE) potently modulates inflammatory cytokine and prostaglandin release from human monocytes through GSK-3 interference. Biochemical Pharmacology, 2020, 180, 114170.	4.4	11
22	Modified Bacterial Cellulose Dressings to Treat Inflammatory Wounds. Nanomaterials, 2020, 10, 2508.	4.1	12
23	A shell-less hen's egg test as infection model to determine the biocompatibility and antimicrobial efficacy of drugs and drug formulations against Pseudomonas aeruginosa. International Journal of Pharmaceutics, 2020, 585, 119557.	5.2	3
24	Process control and scale-up of modified bacterial cellulose production for tailor-made anti-inflammatory drug delivery systems. Carbohydrate Polymers, 2020, 236, 116062.	10.2	49
25	Incorporation of Indole Significantly Improves the Transfection Efficiency of Guanidinium ontaining Poly(Methacrylamide)s. Macromolecular Rapid Communications, 2020, 41, e1900668.	3.9	11
26	Polysaccharide Nanoparticles Bearing HDAC Inhibitor as Nontoxic Nanocarrier for Drug Delivery. Macromolecular Bioscience, 2020, 20, 2000039.	4.1	21
27	Simulation of the long-term fate of superparamagnetic iron oxide-based nanoparticles using simulated biological fluids. Nanomedicine, 2019, 14, 1681-1706.	3.3	17
28	Amino Acid–Substituted Dextranâ€Based Nonâ€Viral Vectors for Gene Delivery. Macromolecular Bioscience, 2019, 19, e1900085.	4.1	18
29	The influence of gradient and statistical arrangements of guanidinium or primary amine groups in poly(methacrylate) copolymers on their DNA binding affinity. Journal of Materials Chemistry B, 2019, 7, 5920-5929.	5.8	11
30	Estimating extra length of stay due to healthcare-associated infections before and after implementation of a hospital-wide infection control program. PLoS ONE, 2019, 14, e0217159.	2.5	23
31	Fungal Biosurfactants from <i>Mortierella alpina</i> . Organic Letters, 2019, 21, 1444-1448.	4.6	26
32	Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydrate Polymers, 2019, 207, 1-10.	10.2	79
33	Immobilization of plasmids in bacterial nanocellulose as gene activated matrix. Carbohydrate Polymers, 2019, 209, 62-73.	10.2	23
34	Polyelectrolyte layer assembly of bacterial nanocellulose whiskers with plasmid DNA as biocompatible non-viral gene delivery system. Cellulose, 2018, 25, 1939-1960.	4.9	21
35	Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state. Materials Today, 2018, 21, 720-748.	14.2	625
36	Improving colloidal stability of silica nanoparticles when stored in responsive gel: application and toxicity study. Nanotoxicology, 2018, 12, 407-422.	3.0	21

#	Article	IF	CITATIONS
37	Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 112-121.	4.3	11
38	Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 120-129.	4.3	42
39	Comprehensive analysis of the in vitro and ex ovo hemocompatibility of surface engineered iron oxide nanoparticles for biomedical applications. Archives of Toxicology, 2017, 91, 3271-3286.	4.2	45
40	Bacterial nanocellulose: the future of controlled drug delivery?. Therapeutic Delivery, 2017, 8, 753-761.	2.2	47
41	Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging. Materials Science and Engineering C, 2017, 81, 422-431.	7.3	62
42	Hospital-related cost of sepsis: A systematic review. Journal of Infection, 2017, 74, 107-117.	3.3	135
43	A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia. International Journal of Nanomedicine, 2016, 11, 575.	6.7	12
44	A Novel Computerized Cell Count Algorithm for Biofilm Analysis. PLoS ONE, 2016, 11, e0154937.	2.5	29
45	Optical detection of nanoparticle agglomeration in a living system under the influence of a magnetic field. Journal of Magnetism and Magnetic Materials, 2015, 380, 61-65.	2.3	12
46	Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis – where do we stand?. Expert Opinion on Drug Delivery, 2015, 12, 1351-1374.	5.0	53
47	The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 1508-1517.	4.9	26
48	Dextran-graft-linear poly(ethylene imine)s for gene delivery: Importance of the linking strategy. Carbohydrate Polymers, 2014, 113, 597-606.	10.2	29
49	Drug delivery strategies in the therapy of inflammatory bowel disease. Advanced Drug Delivery Reviews, 2014, 71, 58-76.	13.7	196
50	Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique. Carbohydrate Polymers, 2014, 106, 410-413.	10.2	26
51	A Novel Method for the Assessment of Targeted PEI-Based Nanoparticle Binding Based on a Static Surface Plasmon Resonance System. Analytical Chemistry, 2014, 86, 6827-6835.	6.5	19
52	Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Advances, 2014, 4, 57173-57184.	3.6	37
53	Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. International Journal of Pharmaceutics, 2014, 471, 45-55.	5.2	205
54	PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 578-586.	4.3	106

#	Article	IF	CITATIONS
55	Poly(ethyleneimines) in dermal applications: Biocompatibility and antimicrobial effects. International Journal of Pharmaceutics, 2013, 456, 165-174.	5.2	67
56	Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 2013, 8, 772-781.	31.5	1,817
57	The Biopolymer Bacterial Nanocellulose as Drug Delivery System: Investigation of Drug Loading and Release using the Model Protein Albumin. Journal of Pharmaceutical Sciences, 2013, 102, 579-592.	3.3	163
58	Recent developments and perspectives on gene therapy using synthetic vectors. Therapeutic Delivery, 2013, 4, 95-113.	2.2	28
59	<i>In vitro</i> hemocompatibility and cytotoxicity study of poly(2â€methylâ€2â€oxazoline) for biomedical applications. Journal of Polymer Science Part A, 2013, 51, 1816-1821.	2.3	67
60	Suitability of Viability Assays for Testing Biological Effects of Coated Superparamagnetic Nanoparticles. IEEE Transactions on Magnetics, 2013, 49, 383-388.	2.1	16
61	State of the Art: Therapeutical Strategies for the Treatment of Inflammatory Bowel Disease. Current Drug Therapy, 2013, 8, 99-120.	0.3	3
62	Polyelectrolyte Complexes of DNA and Linear PEI: Formation, Composition and Properties. Langmuir, 2012, 28, 16167-16176.	3.5	67
63	Starâ€Shaped Block Copolymers by Copperâ€Catalyzed Azideâ€Alkyne Cycloaddition for Potential Drug Delivery Applications. Macromolecular Chemistry and Physics, 2012, 213, 2146-2156.	2.2	13
64	Poly(2â€ethylâ€2â€oxazoline) as Alternative for the Stealth Polymer Poly(ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility. Macromolecular Bioscience, 2012, 12, 986-998.	4.1	243
65	Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chemical Society Reviews, 2012, 41, 4755.	38.1	268
66	Mitoxantrone-loaded zeolite beta nanoparticles: Preparation, physico-chemical characterization and biological evaluation. Journal of Colloid and Interface Science, 2012, 365, 33-40.	9.4	30
67	The physical state of lipid nanoparticles influences their effect on in vitro cell viability. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 150-161.	4.3	51
68	Polymers in Drug Delivery—State of the Art and Future Trends. Advanced Engineering Materials, 2011, 13, B61.	3.5	105
69	Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie - International Edition, 2010, 49, 6288-6308.	13.8	2,857
70	Targeted Delivery of Complexes of Biotin–PEG–Polyethylenimine and NF-κB Decoys to Brain-derived Endothelial Cells in Vitro. Pharmaceutical Research, 2008, 25, 605-615.	3.5	13
71	Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. Journal of Gene Medicine, 2005, 7, 992-1009.	2.8	802
72	Uptake and Transport of PEG-Graft-Trimethyl-Chitosan Copolymer–Insulin Nanocomplexes by Epithelial Cells. Pharmaceutical Research, 2005, 22, 2058-2068.	3.5	149

#	Article	IF	CITATIONS
73	Poly(diallyldimethylammonium chlorides) and their N-methyl-N-vinylacetamide copolymer-based DNA-polyplexes: role of molecular weight and charge density in complex formation, stability, and in vitro activity. International Journal of Pharmaceutics, 2004, 280, 253-269.	5.2	61
74	Effect of poly(ethylene imine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice. Drug Metabolism and Disposition, 2004, 32, 983-92.	3.3	67
75	Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. Journal of Controlled Release, 2003, 89, 113-125.	9.9	758
76	In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24, 1121-1131.	11.4	2,026
77	Poly(ethylenimine-co-l-lactamide-co-succinamide):Â A Biodegradable Polyethylenimine Derivative with an Advantageous pH-Dependent Hydrolytic Degradation for Gene Delivery. Bioconjugate Chemistry, 2002, 13, 812-821.	3.6	125
78	Copolymers of Ethylene Imine andN-(2-Hydroxyethyl)-ethylene Imine as Tools To Study Effects of Polymer Structure on Physicochemical and Biological Properties of DNA Complexes. Bioconjugate Chemistry, 2002, 13, 1124-1133.	3.6	100
79	Polyethylenimine-graft-Poly(ethylene glycol) Copolymers:Â Influence of Copolymer Block Structure on DNA Complexation and Biological Activities as Gene Delivery System. Bioconjugate Chemistry, 2002, 13, 845-854.	3.6	516
80	Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharmaceutical Research, 2002, 19, 140-146.	3.5	140
81	The structure of PEG-modified poly(ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-kappaB decoy in mice. Pharmaceutical Research, 2002, 19, 810-817.	3.5	148
82	Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: implications for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 52, 1-11.	4.3	40
83	Cationized human serum albumin as a non-viral vector system for gene delivery? Characterization of complex formation with plasmid DNA and transfection efficiency. International Journal of Pharmaceutics, 2001, 225, 97-111.	5.2	49
84	Staurosporine-induced apoptosis in cultured chick embryonic neurons is reduced by polyethylenimine of low molecular weight used as a coating substrate. Neuroscience Research, 2000, 37, 245-253.	1.9	13
85	A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharmaceutical Research, 1999, 16, 1273-1279.	3.5	1,128
86	Cell type specificity of the human endoglin promoter. Gene, 1999, 227, 55-62.	2.2	56
87	Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 46, 255-263.	4.3	324

6