David R Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6850295/publications.pdf Version: 2024-02-01

DAVID P NIFLSEN

#	Article	IF	CITATIONS
1	Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 2009, 11, 262-273.	7.0	350
2	Styrene biosynthesis from glucose by engineered E. coli. Metabolic Engineering, 2011, 13, 544-554.	7.0	222
3	In situ product recovery of <i>n</i> â€butanol using polymeric resins. Biotechnology and Bioengineering, 2009, 102, 811-821.	3.3	162
4	Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metabolic Engineering, 2013, 16, 68-77.	7.0	149
5	Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metabolic Engineering, 2016, 35, 105-113.	7.0	112
6	Metabolic engineering of acetoin and <i>meso</i> â€2, 3â€butanediol biosynthesis in <i>E. coli</i> . Biotechnology Journal, 2010, 5, 274-284.	3.5	100
7	Engineering <i>Escherichia coli</i> for renewable production of the 5â€carbon polyamide buildingâ€blocks 5â€aminovalerate and glutarate. Biotechnology and Bioengineering, 2013, 110, 1726-1734.	3.3	86
8	Engineering microbial chemical factories to produce renewable "biomonomersâ€: Frontiers in Microbiology, 2012, 3, 313.	3.5	72
9	Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microbial Cell Factories, 2014, 13, 123.	4.0	59
10	In situ butanol recovery from <i>Clostridium acetobutylicum</i> fermentations by expanded bed adsorption. Biotechnology Progress, 2014, 30, 68-78.	2.6	57
11	Rapid adsorption of alcohol biofuels by high surface area mesoporous carbons. Microporous and Mesoporous Materials, 2012, 148, 107-114.	4.4	56
12	Engineering Escherichia coli for renewable benzyl alcohol production. Metabolic Engineering Communications, 2015, 2, 39-45.	3.6	56
13	Creating pathways towards aromatic building blocks and fine chemicals. Current Opinion in Biotechnology, 2015, 36, 1-7.	6.6	52
14	Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 595-604.	3.0	50
15	Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR). Bioresource Technology, 2010, 101, 2762-2769.	9.6	49
16	Improving n-butanol production in batch and semi-continuous processes through integrated product recovery. Process Biochemistry, 2015, 50, 1487-1498.	3.7	49
17	High-throughput screening for efficient microbial biotechnology. Current Opinion in Biotechnology, 2020, 64, 141-150.	6.6	43
18	Comparing in situ removal strategies for improving styrene bioproduction. Bioprocess and Biosystems Engineering, 2015, 38, 165-174.	3.4	41

DAVID R NIELSEN

#	Article	IF	CITATIONS
19	Microbial production of the aromatic buildingâ€blocks (<i>S</i>)â€styrene oxide and (<i>R</i>)â€1,2â€phenylethanediol from renewable resources. Biotechnology Journal, 2013, 8, 1465-1475.	3.5	40
20	Rational engineering of a novel pathway for producing the aromatic compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli. Process Biochemistry, 2014, 49, 1843-1850.	3.7	38
21	Muconic Acid Production <i>via</i> Alternative Pathways and a Synthetic "Metabolic Funnel― ACS Synthetic Biology, 2018, 7, 565-575.	3.8	37
22	Technoeconomic evaluation of bio-based styrene production by engineered <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1211-1216.	3.0	32
23	Engineering a Synthetic, Catabolically Orthogonal Coculture System for Enhanced Conversion of Lignocellulose-Derived Sugars to Ethanol. ACS Synthetic Biology, 2019, 8, 1089-1099.	3.8	31
24	Bioprospecting of Native Efflux Pumps To Enhance Furfural Tolerance in Ethanologenic <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	31
25	Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2â€Phenylethanol. Biotechnology Journal, 2017, 12, 1700310.	3.5	28
26	Engineering and comparison of nonâ€natural pathways for microbial phenol production. Biotechnology and Bioengineering, 2016, 113, 1745-1754.	3.3	25
27	Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber. Biochemical Engineering Journal, 2007, 36, 239-249.	3.6	21
28	Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber. Biochemical Engineering Journal, 2007, 36, 250-261.	3.6	20
29	High Efficiency and Facile Butanol Recovery with Magnetically Responsive Micro/Mesoporous Carbon Adsorbents. ACS Sustainable Chemistry and Engineering, 2017, 5, 885-894.	6.7	19
30	Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Canadian Journal of Chemical Engineering, 2011, 89, 2-12.	1.7	16
31	Recent trends in integrated bioprocesses: aiding and expanding microbial biofuel/biochemical production. Current Opinion in Biotechnology, 2019, 57, 82-87.	6.6	15
32	Catabolic Division of Labor Enhances Production of D-Lactate and Succinate From Glucose-Xylose Mixtures in Engineered Escherichia coli Co-culture Systems. Frontiers in Bioengineering and Biotechnology, 2020, 8, 329.	4.1	15
33	Adsorption of Short-Chain Alcohols by Hydrophobic Silica Aerogels. Industrial & Engineering Chemistry Research, 2013, 52, 18379-18385.	3.7	11
34	From promise to practice. EMBO Reports, 2013, 14, 1034-1038.	4.5	11
35	Synthetic biology applications in industrial microbiology. Frontiers in Microbiology, 2014, 5, 451.	3.5	9
36	â€~Hybrid' processing strategies for expanding and improving the synthesis of renewable bioproducts. Current Opinion in Biotechnology, 2014, 30, 17-23.	6.6	9

DAVID R NIELSEN

#	Article	IF	CITATIONS
37	Emerging tools, enabling technologies, and future opportunities for the bioproduction of aromatic chemicals. Journal of Chemical Technology and Biotechnology, 2019, 94, 38-52.	3.2	9
38	Catalytic conversion of cyanobacteria-derived fatty acids to alkanes for biorenewable synthetic paraffinic kerosene. Sustainable Energy and Fuels, 2018, 2, 882-893.	4.9	8
39	Optimization of a T7-RNA polymerase system in Synechococcus sp. PCC 7002 mirrors the protein overproduction phenotype from E. coli BL21(DE3). Applied Microbiology and Biotechnology, 2021, 105, 1147-1158.	3.6	8
40	Systematic Engineering of <i>Synechococcus elongatus</i> UTEX 2973 for Photosynthetic Production of <scp>l</scp> -Lysine, Cadaverine, and Glutarate. ACS Synthetic Biology, 2021, 10, 3561-3575.	3.8	8
41	Sensitivity analysis of a proposed model mechanism for newly created glucoseâ€6â€oxidases. AICHE Journal, 2012, 58, 2303-2308.	3.6	7
42	Exploiting Polyploidy for Markerless and Plasmid-Free Genome Engineering in Cyanobacteria. ACS Synthetic Biology, 2021, 10, 2371-2382.	3.8	7
43	Solid-phase extraction of long-chain fatty acids from aqueous solution. Separation and Purification Technology, 2013, 106, 1-7.	7.9	6
44	Activity of Lactobacillus brevis Alcohol Dehydrogenase on Primary and Secondary Alcohol Biofuel Precursors. Fermentation, 2015, 1, 24-37.	3.0	6
45	Characterizing <i>Escherichia coli</i> 's transcriptional response to different styrene exposure modes reveals novel toxicity and tolerance insights. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	6
46	Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals. Metabolic Engineering, 2022, 72, 133-149.	7.0	6
47	Consolidated bioprocessing of hemicellulose to fuels and chemicals through an engineered Bacillus subtilis-Escherichia coli consortium. Renewable Energy, 2022, 193, 288-298.	8.9	6
48	A coculture-coproduction system designed for enhanced carbon conservation through inter-strain CO2 recycling. Metabolic Engineering, 2021, 67, 387-395.	7.0	5
49	Synthetic biology strategies to address waste CO2 loss during biofuel production. Current Opinion in Environmental Science and Health, 2021, , 100305.	4.1	2
50	Heterologous expression and purification of the bicarbonate transporter BicA from Synechocystis sp. PCC 6803. Protein Expression and Purification, 2020, 175, 105716.	1.3	1
51	Applying a â€~Metabolic Funnel' for Phenol Production in Escherichia coli. Fermentation, 2021, 7, 216.	3.0	0
52	Tetragonal crystal form of the cyanobacterial bicarbonate-transporter regulator SbtB from <i>Synechocystis</i> sp. PCC 6803. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 438-443.	0.8	0