List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6850138/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.                                                                                                                    | 28.9 | 973       |
| 2  | Dodeca-CLE Peptides as Suppressors of Plant Stem Cell Differentiation. Science, 2006, 313, 842-845.                                                                                                                                 | 12.6 | 567       |
| 3  | Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15208-15213.                                | 7.1  | 453       |
| 4  | Comprehensive Comparison of Auxin-Regulated and Brassinosteroid-Regulated Genes in Arabidopsis.<br>Plant Physiology, 2004, 134, 1555-1573.                                                                                          | 4.8  | 437       |
| 5  | A Plant Peptide Encoded by CLV3 Identified by in Situ MALDI-TOF MS Analysis. Science, 2006, 313, 845-848.                                                                                                                           | 12.6 | 431       |
| 6  | FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes and Development, 1999, 13, 1079-1088.                                                    | 5.9  | 419       |
| 7  | RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> .<br>Development (Cambridge), 2010, 137, 3911-3920.                                                                                  | 2.5  | 291       |
| 8  | CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2029-2034. | 7.1  | 278       |
| 9  | Brassinolide Induces IAA5, IAA19, and DR5, a Synthetic Auxin Response Element in Arabidopsis, Implying a<br>Cross Talk Point of Brassinosteroid and Auxin Signaling. Plant Physiology, 2003, 133, 1843-1853.                        | 4.8  | 226       |
| 10 | RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Annals of the Rheumatic Diseases, 2016, 75, 1187-1195.                                                                | 0.9  | 177       |
| 11 | A Novel Rice PR10 Protein, RSOsPR10, Specifically Induced in Roots by Biotic and Abiotic Stresses,<br>Possibly via the Jasmonic Acid Signaling Pathway. Plant and Cell Physiology, 2004, 45, 550-559.                               | 3.1  | 172       |
| 12 | The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA<br>microarray screening, affects auxin response in Arabidopsis. Plant Journal, 2002, 32, 1011-1022.                                   | 5.7  | 165       |
| 13 | FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and Floral Meristems. Plant Cell, 1999, 11, 69-86.                                                                                          | 6.6  | 152       |
| 14 | Gain-of-Function Phenotypes of Chemically Synthetic CLAVATA3/ESR-Related (CLE) Peptides in<br>Arabidopsis thaliana and Oryza sativa. Plant and Cell Physiology, 2007, 48, 1821-1825.                                                | 3.1  | 142       |
| 15 | The Receptor-Like Kinase SOL2 Mediates CLE Signaling in Arabidopsis. Plant and Cell Physiology, 2008, 49, 1752-1757.                                                                                                                | 3.1  | 139       |
| 16 | VAN3 ARF–GAP-mediated vesicle transport is involved in leaf vascular network formation.<br>Development (Cambridge), 2005, 132, 1699-1711.                                                                                           | 2.5  | 137       |
| 17 | Mitogen-Activated Protein Kinase Regulated by the CLAVATA Receptors Contributes to Shoot Apical<br>Meristem Homeostasis. Plant and Cell Physiology, 2011, 52, 14-29.                                                                | 3.1  | 130       |
| 18 | CLE peptides and their signaling pathways in plant development. Journal of Experimental Botany, 2016,<br>67, 4813-4826.                                                                                                             | 4.8  | 119       |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nature Plants, 2018, 4, 1071-1081.                                                                                                 | 9.3 | 114       |
| 20 | Interaction of Auxin and ERECTA in Elaborating Arabidopsis Inflorescence Architecture Revealed by<br>the Activation Tagging of a New Member of the YUCCA Family Putative Flavin Monooxygenases. Plant<br>Physiology, 2005, 139, 192-203. | 4.8 | 112       |
| 21 | The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in <i>Lotus japonicus</i> . Development (Cambridge), 2010, 137, 4317-4325.                                               | 2.5 | 109       |
| 22 | Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant Journal, 2011, 65, 430-440.                                                                                                                                    | 5.7 | 108       |
| 23 | Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in<br>Arabidopsis thaliana. Plant Journal, 2001, 26, 365-373.                                                                             | 5.7 | 103       |
| 24 | CLE9 peptideâ€induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide<br>in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2019, 42, 1033-1044.                                | 5.7 | 101       |
| 25 | Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root<br>Endodermal Barriers. Current Biology, 2017, 27, 758-765.                                                                                     | 3.9 | 98        |
| 26 | Chloroplastic <scp>ATP</scp> synthase builds up a proton motive force preventing production of reactive oxygen species in photosystem I. Plant Journal, 2017, 91, 306-324.                                                               | 5.7 | 96        |
| 27 | Heterotrimeric G proteins control stem cell proliferation through <scp>CLAVATA</scp> signaling in <i>Arabidopsis</i> . EMBO Reports, 2014, 15, 1202-1209.                                                                                | 4.5 | 92        |
| 28 | Three-Dimensional Imaging of Plant Organs Using a Simple and Rapid Transparency Technique. Plant and Cell Physiology, 2016, 57, 462-472.                                                                                                 | 3.1 | 79        |
| 29 | Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. Journal of Plant Research, 2009, 122, 31-39.                                                                                  | 2.4 | 78        |
| 30 | Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development (Cambridge), 2009, 136, 1529-1538.                                                       | 2.5 | 77        |
| 31 | The Function of the CLE Peptides in Plant Development and Plant-Microbe Interactions. The Arabidopsis<br>Book, 2011, 9, e0149.                                                                                                           | 0.5 | 69        |
| 32 | BAM 1 and RECEPTOR ―LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptideâ€ŧriggered growth inhibition in A rabidopsis root. New Phytologist, 2015, 208, 1104-1113.                                              | 7.3 | 64        |
| 33 | The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants, 2018, 4, 596-604.                                                                                                                   | 9.3 | 62        |
| 34 | A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem. Development (Cambridge), 2015, 142, 444-453.                                                                                | 2.5 | 61        |
| 35 | The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.                                                                                                               | 3.1 | 60        |
| 36 | Peptide signaling in vascular development. Current Opinion in Plant Biology, 2007, 10, 477-482.                                                                                                                                          | 7.1 | 56        |

SHINICHIRO SAWA

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synergistic Interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in Cyst Nematode<br>Parasitism of <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2013, 26, 87-96.                  | 2.6 | 55        |
| 38 | Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha.<br>PLoS Genetics, 2019, 15, e1007997.                                                                        | 3.5 | 55        |
| 39 | Induction of Multichotomous Branching by CLAVATA Peptide in Marchantia polymorpha. Current<br>Biology, 2020, 30, 3833-3840.e4.                                                                                   | 3.9 | 54        |
| 40 | Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism.<br>Current Opinion in Plant Biology, 2013, 16, 598-606.                                                          | 7.1 | 51        |
| 41 | Differential Effects of the Peptides Stomagen, EPF1 and EPF2 on Activation of MAP Kinase MPK6 and the SPCH Protein Level. Plant and Cell Physiology, 2013, 54, 1253-1262.                                        | 3.1 | 51        |
| 42 | Diverse function of plant peptide hormones in local signaling and development. Current Opinion in<br>Plant Biology, 2019, 51, 81-87.                                                                             | 7.1 | 49        |
| 43 | Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots. Frontiers<br>in Plant Science, 2017, 8, 1195.                                                                            | 3.6 | 46        |
| 44 | Involvement of HLS1 in Sugar and Auxin Signaling in Arabidopsis Leaves. Plant and Cell Physiology,<br>2006, 47, 1603-1611.                                                                                       | 3.1 | 42        |
| 45 | SUPPRESSOR OF <scp>LLP</scp> 1 1â€mediated C–terminal processing is critical for <scp>CLE</scp> 19<br>peptide activity. Plant Journal, 2013, 76, 970-981.                                                        | 5.7 | 42        |
| 46 | Rootâ€knot nematodes induce gall formation by recruiting developmental pathways of postâ€embryonic<br>organogenesis and regeneration to promote transient pluripotency. New Phytologist, 2020, 227,<br>200-215.  | 7.3 | 41        |
| 47 | The roles of peptide hormones during plant root development. Current Opinion in Plant Biology, 2013,<br>16, 56-61.                                                                                               | 7.1 | 40        |
| 48 | A Collection of Mutants for CLE-Peptide-Encoding Genes in Arabidopsis Generated by<br>CRISPR/Cas9-Mediated Gene Targeting. Plant and Cell Physiology, 2017, 58, 1848-1856.                                       | 3.1 | 40        |
| 49 | Evolution of CLE signaling. Plant Signaling and Behavior, 2009, 4, 477-481.                                                                                                                                      | 2.4 | 39        |
| 50 | CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants. Chemical Record, 2006, 6, 303-310.                                                                                               | 5.8 | 37        |
| 51 | Identification of Naturally Occurring Polyamines as Root-Knot Nematode Attractants. Molecular<br>Plant, 2020, 13, 658-665.                                                                                       | 8.3 | 35        |
| 52 | Maturation processes and structures of small secreted peptides in plants. Frontiers in Plant Science, 2014, 5, 311.                                                                                              | 3.6 | 33        |
| 53 | Overexpression of the AtmybL2 Gene Represses Trichome Development in Arabidopsis. DNA Research, 2002, 9, 31-34.                                                                                                  | 3.4 | 32        |
| 54 | Identification of an EMS-induced causal mutation in a gene required for boron-mediated root<br>development by low-coverage genome re-sequencing inArabidopsis. Plant Signaling and Behavior, 2013,<br>8, e22534. | 2.4 | 32        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Conflict Between Cell Proliferation and Expansion Primarily Affects Stem Organogenesis in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1994-2007.                                     | 3.1 | 31        |
| 56 | The rootâ€knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation. New Phytologist, 2021, 229, 3408-3423.                     | 7.3 | 31        |
| 57 | Gene Trapping in Arabidopsis Reveals Genes Involved in Vascular Development. Plant and Cell<br>Physiology, 2006, 47, 1394-1405.                                                                | 3.1 | 30        |
| 58 | Regulation of Root-Knot Nematode Behavior by Seed-Coat Mucilage-Derived Attractants. Molecular<br>Plant, 2019, 12, 99-112.                                                                     | 8.3 | 30        |
| 59 | The sequenced genomes of nonflowering land plants reveal the innovative evolutionary history of peptide signaling. Plant Cell, 2021, 33, 2915-2934.                                            | 6.6 | 30        |
| 60 | <i>CLE6</i> expression recovers gibberellin deficiency to promote shoot growth in Arabidopsis. Plant<br>Journal, 2014, 78, 241-252.                                                            | 5.7 | 29        |
| 61 | The ATE Genes Are Responsible for Repression of Transdifferentiation into Xylem Cells in Arabidopsis.<br>Plant Physiology, 2005, 137, 141-148.                                                 | 4.8 | 28        |
| 62 | A large family of genes that share homology with CLE domain in Arabidopsis and rice. Plant Signaling and Behavior, 2008, 3, 337-339.                                                           | 2.4 | 28        |
| 63 | CLE Signaling Systems During Plant Development and Nematode Infection. Plant and Cell Physiology, 2012, 53, 1989-1999.                                                                         | 3.1 | 28        |
| 64 | Mystery in genetics: PUB4 gives a clue to the complex mechanism of CLV signaling pathway in the shoot apical meristem. Plant Signaling and Behavior, 2015, 10, e1028707.                       | 2.4 | 28        |
| 65 | Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit<br>Comprising PAM-Altered Cas9 Variants and gRNAs. Plant and Cell Physiology, 2019, 60, 2255-2262. | 3.1 | 28        |
| 66 | DRP1A Is Responsible for Vascular Continuity Synergistically Working with VAN3 in Arabidopsis. Plant<br>Physiology, 2005, 138, 819-826.                                                        | 4.8 | 27        |
| 67 | BEACH-Domain Proteins Act Together in a Cascade to Mediate Vacuolar Protein Trafficking and Disease<br>Resistance in Arabidopsis. Molecular Plant, 2015, 8, 389-398.                           | 8.3 | 27        |
| 68 | Polyamine Resistance Is Increased by Mutations in a Nitrate Transporter Gene NRT1.3 (AtNPF6.4) in<br>Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 834.                           | 3.6 | 26        |
| 69 | Plant peptide hormone signalling. Essays in Biochemistry, 2015, 58, 115-131.                                                                                                                   | 4.7 | 26        |
| 70 | Seed Mucilage: Biological Functions and Potential Applications in Biotechnology. Plant and Cell Physiology, 2021, 62, 1847-1857.                                                               | 3.1 | 24        |
| 71 | The RopGEF KARAPPO Is Essential for the Initiation of Vegetative Reproduction in Marchantia polymorpha. Current Biology, 2019, 29, 3525-3531.e7.                                               | 3.9 | 23        |
| 72 | CLE42 delays leaf senescence by antagonizing ethylene pathway in <i>Arabidopsis</i> . New Phytologist, 2022, 235, 550-562.                                                                     | 7.3 | 23        |

SHINICHIRO SAWA

| #  | Article                                                                                                                                                                                                                                | IF          | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 73 | COE1, an LRR-RLK responsible for commissural vein pattern formation in rice. Plant Journal, 2010, 63, 405-416.                                                                                                                         | 5.7         | 19             |
| 74 | Chemotaxis assay of plant-parasitic nematodes on a gel-filled microchannel device. Sensors and Actuators B: Chemical, 2015, 221, 1483-1491.                                                                                            | 7.8         | 19             |
| 75 | The Meloidogyne incognita Nuclear Effector MiEFF1 Interacts With Arabidopsis Cytosolic<br>Glyceraldehyde-3-Phosphate Dehydrogenases to Promote Parasitism. Frontiers in Plant Science, 2021,<br>12, 641480.                            | 3.6         | 19             |
| 76 | A ClearSee-Based Clearing Protocol for 3D Visualization of Arabidopsis thaliana Embryos. Plants, 2021, 10, 190.                                                                                                                        | 3.5         | 17             |
| 77 | Chemotactic Host-Finding Strategies of Plant Endoparasites and Endophytes. Frontiers in Plant<br>Science, 2020, 11, 1167.                                                                                                              | 3.6         | 16             |
| 78 | Callose Synthesis Suppresses Cell Death Induced by Low-Calcium Conditions in Leaves. Plant<br>Physiology, 2020, 182, 2199-2212.                                                                                                        | 4.8         | 16             |
| 79 | Insight into early diversification of leucine-rich repeat receptor-like kinases provided by the sequenced moss and hornwort genomes. Plant Molecular Biology, 2021, 107, 337-353.                                                      | 3.9         | 16             |
| 80 | Root-knot nematode chemotaxis is positively regulated by <scp>l</scp> -galactose sidechains of mucilage carbohydrate rhamnogalacturonan-I. Science Advances, 2021, 7, .                                                                | 10.3        | 15             |
| 81 | Protocol for root-knot nematode culture by a hydroponic system and nematode inoculation to<br><i>Arabidopsis </i> . Nihon Senchu Gakkai Shi = Japanese Journal of<br>Nematology, 2015, 45, 45-49.                                      | 0.3         | 13             |
| 82 | RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> .<br>Development (Cambridge), 2010, 137, 4327-4327.                                                                                     | 2.5         | 12             |
| 83 | RPK2 functions in diverged CLE signaling. Plant Signaling and Behavior, 2011, 6, 86-88.                                                                                                                                                | 2.4         | 12             |
| 84 | Epitypification, emendation and synonymy of Lecanorchis taiwaniana (Vanilleae, Vanilloideae,) Tj ETQq0 0 0 rgB                                                                                                                         | Г /Qvgrlocł | ₹ 10 Tf 50 302 |
| 85 | CLE14 peptide signaling in Arabidopsis root hair cell fate determination. Plant Biotechnology, 2018, 35, 17-22.                                                                                                                        | 1.0         | 10             |
| 86 | Visualization of Toyoura sand-grown plant roots by X-ray computer tomography. Plant<br>Biotechnology, 2020, 37, 481-484.                                                                                                               | 1.0         | 10             |
| 87 | Tryptophan auxotroph mutants suppress the <i>superroot2</i> phenotypes, modulating IAA<br>biosynthesis in <i>Arabidopsis.</i> . Plant Signaling and Behavior, 2011, 6, 1351-1355.                                                      | 2.4         | 9              |
| 88 | Stem integrity in <i>Arabidopsis thaliana</i> requires a load-bearing epidermis. Development<br>(Cambridge), 2021, 148, .                                                                                                              | 2.5         | 9              |
| 89 | The RGF/GLV/CLEL Family of Short Peptides Evolved Through Lineage-Specific Losses and Diversification<br>and Yet Conserves Its Signaling Role Between Vascular Plants and Bryophytes. Frontiers in Plant<br>Science, 2021, 12, 703012. | 3.6         | 9              |
| 90 | Adaptation and Evolution of Seed Shape on Bleeding Area in Japanese Orchids. International Journal of<br>Biology, 2012, 4, .                                                                                                           | 0.2         | 7              |

| #   | Article                                                                                                                                                                                                            | IF                | CITATIONS    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 91  | Artificial Cultivation System for Gastrodia spp. and Identification of Associated Mycorrhizal Fungi.<br>International Journal of Biology, 2017, 9, 27.                                                             | 0.2               | 7            |
| 92  | The atypical E2F transcription factor DEL1 modulates growth–defense tradeoffs of host plants during root-knot nematode infection. Scientific Reports, 2020, 10, 8836.                                              | 3.3               | 7            |
| 93  | Expression of peat moss VASCULAR RELATED NAC-DOMAIN homologs in Nicotiana benthamiana leaf cells induces ectopic secondary wall formation. Plant Molecular Biology, 2021, 106, 309-317.                            | 3.9               | 7            |
| 94  | Long-distance translocation of CLAVATA3/ESR-related 2 peptide and its positive effect on roots sucrose status. Plant Physiology, 2022, 189, 2357-2367.                                                             | 4.8               | 7            |
| 95  | A rapid method for detection of single base changes inArabidopsis thaliana using the polymerase chain reaction. Plant Molecular Biology Reporter, 1997, 15, 179-185.                                               | 1.8               | 6            |
| 96  | Characteristics of the Falling Speed of Japanese Orchid Seeds. International Journal of Biology, 2012,<br>4, .                                                                                                     | 0.2               | 6            |
| 97  | Root-knot nematodes modulate cell walls during root-knot formation in Arabidopsis roots. Journal of Plant Research, 2020, 133, 419-428.                                                                            | 2.4               | 6            |
| 98  | SNPs of CLAVATA receptors in tomato, in the context of root-knot nematode infection. Nihon Senchu<br>Gakkai Shi = Japanese Journal of Nematology, 2011, 41, 35-40.                                                 | 0.3               | 6            |
| 99  | Identification of genes involved in <i>Meloidogyne incognita</i> -induced gall formation<br>processes in <i>Arabidopsis thaliana</i> . Plant Biotechnology, 2021, 38, 1-8.                                         | 1.0               | 5            |
| 100 | Database mining of plant peptide homologues. Plant Biotechnology, 2021, 38, 137-143.                                                                                                                               | 1.0               | 5            |
| 101 | A Phalaenopsis variety with floral organs showing C class homeotic transformation and its revertant may enable Phalaenopsis as a potential molecular genetic material. Genes and Genetic Systems, 2011, 86, 93-95. | 0.7               | 4            |
| 102 | MM31/EIR1promotes lateral root formation inArabidopsis. Plant Signaling and Behavior, 2011, 6, 968-973.                                                                                                            | 2.4               | 4            |
| 103 | Balanced cell proliferation and expansion is essential for flowering stem growth control. Plant<br>Signaling and Behavior, 2015, 10, e992755.                                                                      | 2.4               | 4            |
| 104 | The taxonomic identity of three varieties of Lecanorchis nigricans (Vanilleae, Vanilloideae,) Tj ETQq0 0 0 rgBT /Ov                                                                                                | verlock 10<br>1.0 | Tf 50 222 Td |
| 105 | PUCHI Regulates Giant Cell Morphology During Root-Knot Nematode Infection in Arabidopsis thaliana.<br>Frontiers in Plant Science, 2021, 12, 755610.                                                                | 3.6               | 4            |
| 106 | CLAVATA3-like genes are differentially expressed in grape vine (Vitis vinifera) tissues. Journal of Plant<br>Physiology, 2013, 170, 1379-1383.                                                                     | 3.5               | 3            |
| 107 | Light-dependent green gall formation induced by MeloidogyneÂincognita. Nematology, 2014, 16, 889-893.                                                                                                              | 0.6               | 3            |
| 108 | Discovery, characterization and functional improvement of kumamonamide as a novel plant growth inhibitor that disturbs plant microtubules. Scientific Reports, 2021, 11, 6077.                                     | 3.3               | 3            |

SHINICHIRO SAWA

| #   | Article                                                                                                                                                                                                                                                  | IF              | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 109 | Effect of the CLE14 polypeptide on <i>GLABRA2</i> homolog gene expression in rice and tomato roots. Plant Biotechnology, 2019, 36, 205-208.                                                                                                              | 1.0             | 3             |
| 110 | 3D Body Evolution: Adding a New Dimension to Colonize the Land. Current Biology, 2018, 28, R838-R840.                                                                                                                                                    | 3.9             | 2             |
| 111 | Control of Fusarium and nematodes by entomopathogenic fungi for organic production of Zingiber officinale. Journal of Natural Medicines, 2022, 76, 291-297.                                                                                              | 2.3             | 2             |
| 112 | Development of a dynamic imaging method for gravitropism in pea sprouts using clinical magnetic resonance imaging system. Plant Biotechnology, 2020, 37, 437-442.                                                                                        | 1.0             | 1             |
| 113 | Control of Root Stem Cell Differentiation and Lateral Root Emergence by CLE16/17 Peptides in Arabidopsis. Frontiers in Plant Science, 2022, 13, 869888.                                                                                                  | 3.6             | 1             |
| 114 | CLAVATA3. , 2013, , 1-4.                                                                                                                                                                                                                                 |                 | 0             |
| 115 | Behavior analysis of plant-parasitic nematode in a microchannel. , 2013, , .                                                                                                                                                                             |                 | 0             |
| 116 | Identification of Japanese Lecanorchis (Orchidaceae) Species in Fruiting Stage. International Journal of Biology, 2014, 6, .                                                                                                                             | 0.2             | 0             |
| 117 | Negative phototaxis in M. incognita. International Journal of Biology, 2017, 9, 51.                                                                                                                                                                      | 0.2             | 0             |
| 118 | Effects of CLE peptides on growth of in vitro roots and shoots of persimmon. Acta Horticulturae, 2018, , 93-98.                                                                                                                                          | 0.2             | 0             |
| 119 | Tools to Develop Genetic Model Plants in the Orchidaceous Family. Molecular Biology (Los Angeles,) Tj ETQq1 1                                                                                                                                            | 0.784314<br>0.0 | rgBT /Overloo |
| 120 | Epitypification of Gastrodia pubilabiata (Gastrodieae, Epidendroideae, Orchidaceae). Phytotaxa, 2018,<br>347, 193.                                                                                                                                       | 0.3             | 0             |
| 121 | Lecanorchis moritae (Orchidaceae, Vanilloideae), a new mycoheterotrophic species from<br>Amami-Oshima Island, Japan, based on morphological and molecular data. Phytotaxa, 2019, 404, 137.                                                               | 0.3             | 0             |
| 122 | Editorial: Developmental Modification Under Biotic Interactions in Plants. Frontiers in Plant Science, 2020, 11, 619804.                                                                                                                                 | 3.6             | 0             |
| 123 | Calcium sulfate and calcium carbonate as root-knot-nematode attractants and possible trap materials<br>to protect crop plants. Plant Biotechnology, 2021, 38, 157-159.                                                                                   | 1.0             | 0             |
| 124 | 5PM1-C-6 MicroChannel device for behavior analysis of plant-parasitic nematode : verification of channel standard and concentration distribution in channel. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2013, 2013.5, 35-36. | 0.0             | 0             |
| 125 | The RopGEF KARAPPO is Essential for the Initiation of Vegetative Reproduction in Marchantia. SSRN<br>Electronic Journal, 0, , .                                                                                                                          | 0.4             | 0             |
| 126 | A method for evaluating root-knot nematode infection in rice using a transparent paper pouch. Plant<br>Biotechnology, 2020, 37, 343-347.                                                                                                                 | 1.0             | 0             |