
## Stefan B Haderlein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6850113/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reduction of Substituted Nitrobenzenes by Fe(II) in Aqueous Mineral Suspensions. Environmental<br>Science & Technology, 1995, 29, 2396-2404.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6  | 423       |
| 2  | Specific Adsorption of Nitroaromatic Explosives and Pesticides to Clay Minerals. Environmental Science & amp; Technology, 1996, 30, 612-622.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6  | 374       |
| 3  | Reactivity of Fe(II)-Bearing Minerals toward Reductive Transformation of Organic Contaminants.<br>Environmental Science & Technology, 2004, 38, 799-807.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.6  | 345       |
| 4  | Compound-specific stable isotope analysis of organic contaminants in natural environments: a<br>critical review of the state of the art, prospects, and future challenges. Analytical and Bioanalytical<br>Chemistry, 2004, 378, 283-300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.9  | 319       |
| 5  | Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron<br>Minerals. Chemical Reviews, 2018, 118, 3251-3304.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.0 | 319       |
| 6  | Complete Reduction of TNT and Other (Poly)nitroaromatic Compounds under Iron-Reducing Subsurface Conditions. Environmental Science & amp; Technology, 1999, 33, 1479-1487.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.6  | 254       |
| 7  | Reduction of Polyhalogenated Methanes by Surface-Bound Fe(II) in Aqueous Suspensions of Iron<br>Oxides. Environmental Science & Technology, 2002, 36, 1734-1741.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6  | 251       |
| 8  | Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environmental Science & Scie | 4.6  | 248       |
| 9  | Reactivity of Fe(II) Species Associated with Clay Minerals. Environmental Science & Technology, 2003, 37, 519-528.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6  | 219       |
| 10 | New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes:Â<br>Application to Groundwater Contamination by MTBE. Environmental Science & Technology, 2005,<br>39, 1018-1029.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6  | 184       |
| 11 | Natural Organic Matter as Reductant for Chlorinated Aliphatic Pollutants. Environmental Science<br>& Technology, 2003, 37, 2714-2719.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.6  | 171       |
| 12 | MTBE Oxidation by Conventional Ozonation and the Combination Ozone/Hydrogen Peroxide:Â Efficiency of the Processes and Bromate Formation. Environmental Science & Technology, 2001, 35, 4252-4259.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6  | 153       |
| 13 | Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids. Geochimica Et Cosmochimica Acta, 2010, 74, 3721-3734.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6  | 139       |
| 14 | Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies. Science of the Total Environment, 2016, 569-570, 179-190.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9  | 137       |
| 15 | Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface. Journal of<br>Contaminant Hydrology, 2004, 70, 173-203.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6  | 134       |
| 16 | In SituSpectroscopic Investigations of Adsorption Mechanisms of Nitroaromatic Compounds at Clay<br>Minerals. Environmental Science & Technology, 1997, 31, 240-247.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6  | 133       |
| 17 | Aqueous Speciation and 1-Octanolâ^'Water Partitioning of Tributyl- and Triphenyltin:Â Effect of pH and<br>Ion Composition. Environmental Science & Technology, 1997, 31, 2596-2602.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6  | 133       |
| 18 | Oxidation of Substituted Anilines by Aqueous MnO2:Â Effect of Co-Solutes on Initial and<br>Quasi-Steady-State Kinetics. Environmental Science & Technology, 1997, 31, 2642-2649.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6  | 129       |

STEFAN B HADERLEIN

| #  | Article                                                                                                                                                                                                                                                   | IF                   | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|
| 19 | Compound-Specific Carbon Isotope Analysis of Volatile Organic Compounds in the Low-Microgram per<br>Liter Range. Analytical Chemistry, 2003, 75, 5575-5583.                                                                                               | 3.2                  | 123           |
| 20 | Characterization of Predominant Reductants in an Anaerobic Leachate-Contaminated Aquifer by Nitroaromatic Probe Compounds. Environmental Science & amp; Technology, 1998, 32, 23-31.                                                                      | 4.6                  | 121           |
| 21 | Mechanisms and Products of Surface-Mediated Reductive Dehalogenation of Carbon Tetrachloride by Fe(II) on Goethite. Environmental Science & Technology, 2004, 38, 2058-2066.                                                                              | 4.6                  | 121           |
| 22 | Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the<br>Fe(II)-Goethite Surface from AQDS Speciation. Environmental Science & Technology, 2013, 47,<br>14161-14168.                                            | 4.6                  | 109           |
| 23 | Potential effects of biochar on the availability of phosphorus — mechanistic insights. Geoderma, 2016, 277, 83-90.                                                                                                                                        | 2.3                  | 106           |
| 24 | Compound-Specific Chlorine Isotope Analysis: A Comparison of Gas Chromatography/Isotope Ratio<br>Mass Spectrometry and Gas Chromatography/Quadrupole Mass Spectrometry Methods in an<br>Interlaboratory Study. Analytical Chemistry, 2011, 83, 7624-7634. | 3.2                  | 101           |
| 25 | Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and o -Xylene in Sediment-Free<br>Iron-Reducing Enrichment Cultures. Applied and Environmental Microbiology, 2005, 71, 3355-3358.                                                                | 1.4                  | 99            |
| 26 | A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds. Rapid Communications in Mass Spectrometry, 2006, 20, 3639-3648.                                                                 | 0.7                  | 96            |
| 27 | Sorption of Organotin Biocides to Mineral Surfaces. Environmental Science & Technology, 1997, 31, 2603-2609.                                                                                                                                              | 4.6                  | 94            |
| 28 | Changes in the Enantiomeric Ratio of (R)- to (S)-Mecoprop Indicate in Situ Biodegradation of This<br>Chiral Herbicide in a Polluted Aquifer. Environmental Science & Technology, 1998, 32, 2070-2076.                                                     | 4.6                  | 84            |
| 29 | Simultaneous Determination of Fuel Oxygenates and BTEX Using Direct Aqueous Injection Gas<br>Chromatography Mass Spectrometry (DAI-GC/MS). Environmental Science & Technology, 2002, 36,<br>2054-2059.                                                    | 4.6                  | 80            |
| 30 | Reductive Dechlorination of TCE by Chemical Model Systems in Comparison to Dehalogenating<br>Bacteria: Insights from Dual Element Isotope Analysis ( <sup>13</sup> C/ <sup>12</sup> C,) Tj ETQq0 0 0 rgBT /C                                              | )ve <b>tlo</b> ck 10 | ) Tf 50 297 T |
| 31 | Complex Formation of Soil Minerals with Nitroaromatic Explosives and other Ï€â€Acceptors. Soil<br>Science Society of America Journal, 1998, 62, 369-378.                                                                                                  | 1.2                  | 72            |
| 32 | Sorption of Heterocyclic Organic Compounds to Reference Soils:Â Column Studies for Process<br>Identification. Environmental Science & Technology, 2006, 40, 5962-5970.                                                                                    | 4.6                  | 71            |
| 33 | Laboratory and Field Scale Evaluation of Geochemical Controls on Groundwater Transport of<br>Nitroaromatic Ammunition Residues. Environmental Science & Technology, 1999, 33, 2593-2600.                                                                  | 4.6                  | 69            |
| 34 | Nonlinear sorption and nonequilibrium solute transport in aggregated porous media: Experiments,<br>process identification and modeling. Journal of Contaminant Hydrology, 1998, 31, 373-407.                                                              | 1.6                  | 67            |
| 35 | A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience, 2021, 14, 264-272.                                                                                                                  | 5.4                  | 67            |
| 36 | Chlorine Isotope Analysis of Organic Contaminants Using GC–qMS: Method Optimization and<br>Comparison of Different Evaluation Schemes. Environmental Science & Technology, 2011, 45,<br>5279-5286.                                                        | 4.6                  | 66            |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | LFERs for Soil Organic Carbonâ^'Water Distribution Coefficients ( <i>K</i> <sub>OC</sub> ) at<br>Environmentally Relevant Sorbate Concentrations. Environmental Science & Technology, 2009, 43,<br>3094-3100.                                      | 4.6 | 64        |
| 38 | Carbon Isotope Fractionation in the Reductive Dehalogenation of Carbon Tetrachloride at Iron<br>(Hydr)Oxide and Iron Sulfide Minerals. Environmental Science & Technology, 2005, 39, 5634-5641.                                                    | 4.6 | 63        |
| 39 | Biodegradability and groundwater pollutant potential of organic anti-freeze liquids used in borehole<br>heat exchangers. Geothermics, 2007, 36, 348-361.                                                                                           | 1.5 | 60        |
| 40 | Aggregation-dependent electron transfer via redox-active biochar particles stimulate microbial ferrihydrite reduction. Science of the Total Environment, 2020, 703, 135515.                                                                        | 3.9 | 57        |
| 41 | Delineation of Multiple Chlorinated Ethene Sources in an Industrialized Area—A Forensic Field Study<br>Using Compound-Specific Isotope Analysis. Environmental Science & Technology, 2009, 43,<br>2701-2707.                                       | 4.6 | 56        |
| 42 | Flow-through experiments on water–rock interactions in a sandstone caused by CO2 injection at pressures and temperatures mimicking reservoir conditions. Applied Geochemistry, 2015, 58, 136-146.                                                  | 1.4 | 55        |
| 43 | Environmental Processes Influencing the Rate of Abiotic Reduction of Nitroaromatic Compounds in the Subsurface. , 1995, , 199-225.                                                                                                                 |     | 53        |
| 44 | Heterogeneous oxidation of Fe(II) on iron oxides in aqueous systems: Identification and controls of Fe(III) product formation. Geochimica Et Cosmochimica Acta, 2012, 91, 171-186.                                                                 | 1.6 | 52        |
| 45 | Environmental Factors Influencing Sorption of Heterocyclic Aromatic Compounds to Soil.<br>Environmental Science & Technology, 2007, 41, 3172-3178.                                                                                                 | 4.6 | 51        |
| 46 | Effects of Zwitterionic Buffers on Sorption of Ferrous Iron at Goethite and Its Oxidation by CCl <sub>4</sub> . Environmental Science & Technology, 2011, 45, 3355-3360.                                                                           | 4.6 | 49        |
| 47 | AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales. Environmental Science & Technology, 2020, 54, 4131-4139.                                                                                                       | 4.6 | 49        |
| 48 | Analysis of fuel oxygenates in the environment. Analyst, The, 2001, 126, 405-413.                                                                                                                                                                  | 1.7 | 45        |
| 49 | Occurrence and fate modeling of MTBE and BTEX compounds in a Swiss Lake used as drinking water supply. Water Research, 2004, 38, 1520-1529.                                                                                                        | 5.3 | 41        |
| 50 | Aerobic Biodegradation of Chlorinated Ethenes in a Fractured Bedrock Aquifer: Quantitative<br>Assessment by Compound-Specific Isotope Analysis (CSIA) and Reactive Transport Modeling.<br>Environmental Science & Technology, 2009, 43, 7458-7464. | 4.6 | 41        |
| 51 | Compound-Specific Factors Influencing Sorption Nonlinearity in Natural Organic Matter.<br>Environmental Science & Technology, 2008, 42, 5897-5903.                                                                                                 | 4.6 | 40        |
| 52 | Polar Fuel Constituents:Â Compound Identification and Equilibrium Partitioning between Nonaqueous<br>Phase Liquids and Water. Environmental Science & Technology, 2002, 36, 4074-4080.                                                             | 4.6 | 39        |
| 53 | Diffusive Fractionation of BTEX and Chlorinated Ethenes in Aqueous Solution: Quantification of Spatial Isotope Gradients. Environmental Science & amp; Technology, 2014, 48, 6141-6150.                                                            | 4.6 | 38        |
| 54 | Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine,<br>South China. Ecotoxicology and Environmental Safety, 2018, 155, 50-58.                                                                             | 2.9 | 37        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Electron Hopping Enables Rapid Electron Transfer between Quinone-/Hydroquinone-Containing<br>Organic Molecules in Microbial Iron(III) Mineral Reduction. Environmental Science & Technology,<br>2020, 54, 10646-10653.                  | 4.6 | 34        |
| 56 | Pollutant Reduction in Heterogeneous Fe(II)-Fe(III) Systems. ACS Symposium Series, 1999, , 342-357.                                                                                                                                     | 0.5 | 30        |
| 57 | Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins. Water<br>Research, 2005, 39, 4164-4176.                                                                                                    | 5.3 | 30        |
| 58 | Effect of water content on solute transport in a porous medium containing reactive micro-aggregates. Journal of Contaminant Hydrology, 1998, 33, 211-230.                                                                               | 1.6 | 28        |
| 59 | Effects of Native Organic Material and Water on Sorption Properties of Reference Diesel Soot.<br>Environmental Science & Technology, 2009, 43, 3187-3193.                                                                               | 4.6 | 27        |
| 60 | Practical issues relating to soil column chromatography for sorption parameter determination.<br>Chemosphere, 2010, 80, 787-793.                                                                                                        | 4.2 | 27        |
| 61 | Treatment of multi-dentate surface complexes and diffuse layer implementation in various speciation codes. Applied Geochemistry, 2015, 55, 128-137.                                                                                     | 1.4 | 27        |
| 62 | Characterization of Sorbent Properties of Soil Organic Matter and Carbonaceous Geosorbents Using<br><i>n</i> -Alkanes and Cycloalkanes as Molecular Probes. Environmental Science & Technology,<br>2009, 43, 393-400.                   | 4.6 | 26        |
| 63 | Chemical changes in fluid composition due to CO2 injection in the Altmark gas field: preliminary results from batch experiments. Environmental Earth Sciences, 2012, 67, 385-394.                                                       | 1.3 | 26        |
| 64 | Simulation of nonlinear sorption of N-heterocyclic organic contaminates in soil columns. Journal of Contaminant Hydrology, 2009, 107, 58-65.                                                                                            | 1.6 | 25        |
| 65 | Effects of Sorption on Redox Properties of Natural Organic Matter. Environmental Science &<br>Technology, 2019, 53, 14319-14328.                                                                                                        | 4.6 | 25        |
| 66 | Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: method<br>development and application to beer beverages and environmental studies. Analytical and<br>Bioanalytical Chemistry, 2020, 412, 4967-4983.  | 1.9 | 24        |
| 67 | Experimental Determination of Isotope Enrichment Factors – Bias from Mass Removal by Repetitive<br>Sampling. Environmental Science & Technology, 2017, 51, 1527-1536.                                                                   | 4.6 | 21        |
| 68 | High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling. Biogeosciences, 2020, 17, 683-698.             | 1.3 | 20        |
| 69 | Reduction of Prussian Blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga. Environmental Microbiology, 2006, 8, 362-367.                                                                         | 1.8 | 19        |
| 70 | Resiliency of Stable Isotope Fractionation (δ <sup>13</sup> C and δ <sup>37</sup> Cl) of Trichloroethene<br>to Bacterial Growth Physiology and Expression of Key Enzymes. Environmental Science &<br>Technology, 2015, 49, 13230-13237. | 4.6 | 19        |
| 71 | New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes:Â<br>Application to Groundwater Contamination by MTBE. Environmental Science & Technology, 2005,<br>39, 7344-7344.                      | 4.6 | 18        |
| 72 | Use and Occurrence of Fuel Oxygenates in Europe. ACS Symposium Series, 2001, , 58-79.                                                                                                                                                   | 0.5 | 17        |

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Introduction to Aquatic Redox Chemistry. ACS Symposium Series, 2011, , 1-14.                                                                                                                                                                                       | 0.5 | 16        |
| 74 | Preferential Sorption of Tannins at Aluminum Oxide Affects the Electron Exchange Capacities of<br>Dissolved and Sorbed Humic Acid Fractions. Environmental Science & Technology, 2020, 54,<br>1837-1847.                                                           | 4.6 | 16        |
| 75 | Biochar as electron donor for reduction of N2O by Paracoccus denitrificans. FEMS Microbiology<br>Ecology, 2020, 96, .                                                                                                                                              | 1.3 | 14        |
| 76 | Integrated Carbon and Chlorine Isotope Modeling: Applications to Chlorinated Aliphatic<br>Hydrocarbons Dechlorination. Environmental Science & Technology, 2013, 47, 130122142002006.                                                                              | 4.6 | 12        |
| 77 | Electron Transfer Between Sulfide and Humic Acid: Electrochemical Evaluation of the Reactivity of<br>Sigma-Aldrich Humic Acid Toward Sulfide. Aquatic Geochemistry, 2016, 22, 117-130.                                                                             | 1.5 | 12        |
| 78 | Spherical Clay Conglomerates:Â A Novel Stationary Phase for Solid-Phase Extraction and<br>"Reversed-Phase―Liquid Chromatography. Analytical Chemistry, 1999, 71, 2171-2178.                                                                                        | 3.2 | 11        |
| 79 | Stable carbon isotope analysis of polyphosphonate complexing agents by anion chromatography coupled to isotope ratio mass spectrometry: method development and application. Analytical and Bioanalytical Chemistry, 2020, 412, 4827-4835.                          | 1.9 | 11        |
| 80 | Determination of the subcooled liquid solubilities of PAHs in partitioning batchÂexperiments.<br>Geoscience Frontiers, 2013, 4, 123-126.                                                                                                                           | 4.3 | 10        |
| 81 | Optimization of a largeâ€volume injection method for compoundâ€specific isotope analysis of polycyclic aromatic compounds at trace concentrations. Rapid Communications in Mass Spectrometry, 2015, 29, 2349-2360.                                                 | 0.7 | 10        |
| 82 | Deciphering the Variability of Stable Isotope (C, Cl) Fractionation of Tetrachloroethene<br>Biotransformation by <i>Desulfitobacterium</i> strains Carrying Different Reductive Dehalogenases<br>Enzymes. Environmental Science & Technology, 2020, 54, 1593-1602. | 4.6 | 10        |
| 83 | Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. Earth-Science Reviews, 2020, 208, 103281.                                                               | 4.0 | 10        |
| 84 | Powering biological nitrogen removal from the environment by geobatteries. Trends in<br>Biotechnology, 2022, 40, 377-380.                                                                                                                                          | 4.9 | 10        |
| 85 | Calibration bias of experimentally determined chlorine isotope enrichment factors: the need for a twoâ€point calibration in compoundâ€specific chlorine isotope analysis. Rapid Communications in Mass Spectrometry, 2017, 31, 68-74.                              | 0.7 | 9         |
| 86 | Two Pathways Compete in the Mn(II)-Catalyzed Oxidation of Aminotrismethylene Phosphonate (ATMP).<br>Environmental Science & Technology, 2022, 56, 4091-4100.                                                                                                       | 4.6 | 8         |
| 87 | Contaminant Mass Transfer from NAPLs to Water Studied in a Continuously Stirred Flow-Through Reactor. Journal of Environmental Engineering, ASCE, 2012, 138, 826-832.                                                                                              | 0.7 | 7         |
| 88 | Increased copper levels inhibit denitrification in urban soils. Earth and Environmental Science<br>Transactions of the Royal Society of Edinburgh, 2018, 109, 421-427.                                                                                             | 0.3 | 7         |
| 89 | Denitrifier Method for Nitrite Removal in Electrochemical Analysis of the Electron Accepting Capacity of Humic Substances. Analytical Chemistry, 2020, 92, 616-621.                                                                                                | 3.2 | 6         |
| 90 | Nano-sized zeolites as modulators of thiacloprid toxicity on <i>Chironomus riparius</i> . PeerJ, 2017, 5, e3525.                                                                                                                                                   | 0.9 | 6         |

STEFAN B HADERLEIN

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Phosphate addition enhances alkaline extraction of glyphosate from highly sorptive soils and aquatic sediments. Pest Management Science, 2022, 78, 2550-2559.                                                                             | 1.7 | 6         |
| 92 | Response to Comment on "New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher<br>Biodegradation Processes: Application to Groundwater Contamination by MTBE― Environmental<br>Science & Technology, 2005, 39, 8543-8544. | 4.6 | 5         |
| 93 | Effect of injected CO2 on geochemical alteration of the Altmark gas reservoir in Germany.<br>Environmental Earth Sciences, 2014, 72, 3655-3662.                                                                                           | 1.3 | 5         |
| 94 | Nano-sized Al2O3 reduces acute toxic effects of thiacloprid on the non-biting midge Chironomus riparius. PLoS ONE, 2017, 12, e0176356.                                                                                                    | 1.1 | 5         |
| 95 | Heavy rainfall following a summer drought stimulates soil redox dynamics and facilitates rapid and deep translocation of glyphosate in floodplain soils. Environmental Sciences: Processes and Impacts, 2022, , .                         | 1.7 | 2         |
| 96 | Response to Comment on "Effects of Native Organic Material and Water on Sorption Properties of<br>Reference Diesel Sootâ€: Environmental Science & Technology, 2009, 43, 5160-5160.                                                       | 4.6 | 0         |